
13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”
July 29-31, 2015, Santo Domingo, Dominican Republic ISBN: 13 978-0-9822896-8-6 ISSN: 2414-6668
DOI: http://dx.doi.org/10.18687/LACCEI2015.1.1.230

 Deployment Strategy for Secure Systems in
Populations of Low Digital Literacy

Juan C Lavariega, PhD1, Emanuel Casas, MS1, Lorena G Gomez, PhD1, Kim Mallaliu, Ph.D2
1 Tecnologico de Monterrey, Mexico, lavariega@itesm.mx, emmanuelcb@gmail.com, lgomez@itesm.mx

2University of West Indies,kim.mallaliu@sta.uwi.edu

Abstract– Nowadays, we depend on multiple computer systems and
software applications, which ease our daily lives. From financial
and corporate applications to health records and personal apps for
keeping records of our daily habits such as food intake, exercise
routings or just chatting with distant family members and friends.
Undoubtedly, all software applications must exhibit security as one
of their top quality attributes, in some applications security is the
most valuable characteristics, for example, online financial
applications and electronic health records deal with sensitive,
private and confidential information. In this paper, we present our
software development framework for achieving secure applications.
We have used this framework in the construction of a financial
application that manages on-line wireless transactions in rural
communities and we have starting using the framework in our
remote health monitoring and EHR systems. Our framework for
building secure applications consists of principles, strategies, and
tasks associated to the software development process.

Keywords— Secure software, software development, design,
human factors.

Digital Object Identifier (DOI): http://dx.doi.org/10.18687/LACCEI2015.1.1.230
ISBN: 13 978-0-9822896-8-6
ISSN: 2414-6668

July 29-31, 2015, Santo Domingo, Dominican Republic 1

Deployment Strategy for Secure Systems in
Populations of Low Digital Literacy

Juan C Lavariega1, PhD, Emanuel Casas2, MS, Lorena G Gomez3, PhD, Kim Mallaliu4, Ph.D
1,2,3Tecnologico de Monterrey, Mexico 1lavariega@itesm.mx, 2emmanuelcb@gmail.com 3lgomez@itesm.mx

4University of West Indies,kim.mallaliu@sta.uwi.edu

ABSTRACT
Nowadays, we depend on multiple computer systems and
software applications, which ease our daily lives. From financial
and corporate applications to health records and personal apps for
keeping records of our daily habits such as food intake, exercise
routings or just chatting with distant family members and friends.
Undoubtedly, all software applications must exhibit security as
one of their top quality attributes, in some applications security is
the most valuable characteristics, for example, online financial
applications and electronic health records deal with sensitive,
private and confidential information. In this paper, we present our
software development framework for achieving secure
applications. We have used this framework in the construction of a
financial application that manages on-line wireless transactions in
rural communities and we have starting using the framework in
our remote health monitoring and EHR systems. Our framework
for building secure applications consists of principles, strategies,
and tasks associated to the software development process

Categories and Subject Descriptors
K.6.1[Project and People Management] Strategic Information
Systems Planning

General Terms
Design, Secure Software, Human Factors.

Keywords
Secure software, software development.

1. INTRODUCTION
Multiple software systems ease our daily lives, from
financial and corporate applications to health records and
personal-mobile apps. As the adoption, reach and
functionality of software applications continue to grow,
software developers are increasingly required to integrate
security features in their development lifecycles. At the
same time, the low entry barrier for software production has
expanded the development community beyond the tradition
of thematic experts to include vibrant and productive
entrepreneurs with practical, rather than strictly academic,
backgrounds. Without exception, all developers require to
integrate security features into their software products to
reduce users’ vulnerability to malware and loss or theft of

their private information. An approach, useful for experts
and novice developers, to navigate to the plethora of
security assessment alternatives (methodologies, tools,
standards, etc) is the use of guidelines. Figure 1, illustrates
the relationship of secure software development alternatives
that we have reviewed.

This paper presents our framework for supporting the
implementation of secure software based on well-
established principles. The paper describes the security
principles as the foundation for secure software
development, categorizes them according to their
relationship to key aspects of the development process,
identifies specific tasks, which we use to put the principles
into practice, and describes the framework in terms of the
mappings between principles and tasks in the context of the
software development lifecycle.

Even though our framework is still a work in progress, we
have tested its applicability in the development of a mobile
application for financial transaction in underdeveloped
communities, and currently we are applying it for our
projects in remote heath monitoring in rural areas. In this
paper, we present our framework to guide, track and
appraise the development of secure software.

We organize the remaining of the paper as follows. Section
2 addresses the concept of security and its relevance to
software systems. It also presents related preliminary work
in defining security principles for software development..

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”
July 29-31, 2015, Santo Domingo, Dominican Republic ISBN: 13 978-0-9822896-8-6 ISSN: 2414-6668
DOI: http://dx.doi.org/10.18687/LACCEI2015.1.1.230

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 2

Section 3 presents our framework for secure software
development. Section 4 shows how we applied the
framework in the construction of the mobile financial
transactions application. Section 5 concludes our paper and
addresses future work.

2. SECURITY IN SOFTWARE

Security is the quality attribute of software systems to
protect against accidental or deliberate intrusion. Security
implies the protection of that any information asset from
unauthorized access while still providing full services to
authorized users and systems.

The low entry barrier for software production has expanded
the development community beyond the tradition of
thematic experts to include entrepreneurs with practical,
rather than strictly academic, backgrounds. At the same
time, the adoption, reach and functionality of software
applications continue to grow, and all software developers
are increasingly required to integrate security features into
their development lifecycle

Security principles are the basis for deriving system
requirements and they are applicable to all stages of the
software development lifecycle. They reduce design flaws
that directly affect application security. They are
architecturally neutral and programming language
independent.

In [1] J.H.Saltzer published seven principles for secure
system design as lessons learned regarding data protection
in the implementation of one of the first timeshared
operating systems. In [2] Saltzer and Schroeder published
eight systems design principles that contribute to the
flawless implementation of security systems using the
notion of security principles as a reference 'mechanism' to
appraise the security of integrity strategies. Additional
security principles appear on [15, 14, 21, 19, 20, 16, 7, 18].
Each of those authors provides between seven and thirty-
five principles.

We have analyzed the aggregate set of principles from all of
the sources to eliminate redundancies in naming as well as
objectives. The result is a reduced set of twenty-eight
orthogonal principles that we will present in the following
section as part of our framework for secure software
development.

We also included in our research a survey of software
development methodologies, because several methodologies
have been defined for integrating security throughout the
life cycle of software development, as in [14] where the

authors assert that integral to secure software are the
processes of designing, building and testing

3. FRAMEWORK FOR GUIDE TRACK

AND APPRAISE THE DEVELOPMENT OF

SECURE SOFTWARE

Our framework relates the security principles to specific
tasks performed at several phases of the software
development cycle. As a guide to ensuring that security is
integrated into the implementation of the software
development life cycle, it is useful to categorize security
principles according to their relationship to: security goals,
policies and design philosophy; requirements gathering;
architectural design; security mechanisms; and recovery
from failure. The general list of security principles was
taken from the most significant sources of existing security
principles. The amount of security principles presented by
each of the sources varies from seven to thirty-two
principles. The list presented in this research, shows in
compendium different principles that completely differs in
the sources.

We classified security principles into the following
categories security goals, policies and design philosophy;
requirements gathering; architectural design; security
mechanisms; and recovery from failure.

3.1 Classification of Security Principles
Security Goals, Policies and Design Philosophy:

P1. Define product security goals and action items to
achieve them [7, 19]
P2. Establish a sound security policy as the foundation for
design, considering security as a product feature [7, 19]
P3. Define Secure Defaults [7, 19]
P4. Design the security process as an integral part of the
overall system design [7].

Requirements Gathering:
P5. Assume nothing while gathering requirements [20]
P6. Use common language in developing security
requirements [19].

Architectural Design:
P7. Strive for simplicity and for operational ease of use [20,
21, 14, 19]
P8 Implement layered security [7]
P9 Ensure no single point of vulnerability [7]
P10 Practice defense in depth [14, 21, 20, 7]
P11 Take for granted that external systems are insecure [21,
19, 7]
P12 Limit or contain vulnerabilities, implementing
Sandboxing or Compartmentalizing [19, 20, 7]
P13 Minimize the system elements to be trusted [14]
P14 Minimize Attack Surface Area [21]

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 3

P15 Delineate the physical and logical security boundaries
governed by associated security policies [7]
P16 Use boundary mechanisms to separate computing
systems and network infrastructures [7]
P17 Identify and secure the weakest link [20].

Security Mechanisms:
P18. Implement Separation of Duties and Least Privilege

[14, 21, 19, 20, 16, 7].
P19. Do not implement unnecessary security mechanisms

[7]
P20. Authenticate users and processes to ensure appropriate
access control decisions both within and across domains
[14, 19]
P21. Separate critical from noncritical information [7]
P22. Use unique identities to ensure accountability [7]
P23. Do not trusts Security through Obscurity [14, 21, 7]
P24. Protect information while being processed, in transit,
and in storage [14, 19]
P25. Protect against all likely classes of attacks [7].

Recovery from Failure:
P26. Develop and exercise contingency or disaster recovery
procedures to ensure appropriate availability [7]
P27. Fail and recover securely [21,20,7]
P28. Design and implement audit mechanisms to detect
unauthorized use and to support incident investigations
[19].

3.2 Classification of Security Related Tasks in

Software Development.
A primary objective of any software development process
focused on information security is to produce secure
software by reducing the possibility that designers and
developers introduce vulnerabilities in design and coding
[7]. Although these phases are critical to the protection
against vulnerabilities in software systems, they are not the
only stages of vulnerability. Indeed, Khan & Zulkernine [8]
assert that integral to safety software are the processes of
designing, building and testing software. Several
methodologies have been defined for integrating software
engineering security throughout the life cycle of software
development.

The methodologies includes in our study were: Secure
software development lifecycle (SSDLC); Structured
Systems Analysis and Design (SSDM); Team Software
Process for Secure Software Development (TSPSecure);
ISO/IEC 10227, Security Development Lifecycle (SDL);
Microsoft Secure Software Development (MSSD); Building
Security In Maturity Model (BSIMM); Simple Service
Discovery Protocol (SSDP); Apvrille; Secure Software
Development Process Model (S2Dprom); and, Software
Evaluation Framework SEF. Table 1 compares these

methodologies in terms of their coverage of tasks relating to
training, planning, analysis, design, design review, coding,
code review, testing, deployment, maintenance, feedback
and assurance.

We extracted the following tasks as representative for each
phase in the software development lifecycle. These tasks are
universally applicable to the methodologies under
consideration:

Planning:
T1. Product security objectives definition [18]
T2. Product Development strategy specification [3, 18]
T3. Definition of security requirements [2, 3, 4, 18]

a functional
b. non-functional

T4. Prioritization of requirements [8]
T5. Assessment of requirements [8]

Analysis:

T6. Definition of security use cases [4, 8, 13]
T7. Definition of abuse cases [2]
T8. Proposed test cases [4, 8]
T9. Risk analysis in security and privacy [1, 2, 3, 6, 8, 18]
T10. Threat modelling [6, 8, 18]
T11. Definition of mitigation plans [3, 8, 13]
T12. Identification of roles of users [8]
T13. Identification and categorization of vulnerability [3, 8]
T14. Analysis of the attack surface [6, 8]

Design:

T15. Functional design specification [6, 8]
T16. Reinforcement of rules through the proposed
architecture [4, 5, 8]
T17. Design decisions to mitigate threats [5, 8]
T18. Prioritization of design decisions [8, 2, 4]
T19. Evaluation of safety in design [8, 13]

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 4

T20. Identification of resources and trust boundaries [8]

Coding:
T21. Select language, development platforms and

components. Keep in mind the need to remove
security flaws and prevent their initial insertion. [1,
6, 8, 18]

T22. Monitoring of standards and guides for secure coding
[3, 8]

Training:

T23. Elaboration of user training, education and awareness
programs

Deployment, Maintenance and Feedback:

T24. Design of plan of incidents and reports
T25. Design of operation and maintenance manuals
T26. Definition of safety management procedures
T27. Monitoring of security
T28. Security update
Testing and Assurance:

T29. Run tests:
a. Penetration
b. Unit
c. Functional

T30. Definition of strategy and testing tools
T31. Dynamic analysis
T32. Fuzz testing
T33. Execution of risk-based security tests
T34. Execution of vulnerability assessment

Reviews:
T35. Specification of security patches
T36. Elaboration of strategy for design review
T37. Elaboration of strategy for code review
T38. Elaboration of strategy for security inspections
T39. Verification and testing of security

3.3 Framework Discussion
Our framework maps all security related task to the relevant
security principles. The framework performs the mapping in
the context of the development lifecycle therefore producing
simple reference aids for secure software implementation.

In our framework, we partition the overall software
development lifecycle into three major segments: inception,
development and delivery, as shown in Figure 2. We
execute planning, analysis and design during inception;
coding during development; and, deployment and training
during delivery. At the end of the inception phase, we
generate work elements specifications. In addition to the
key activities executed during inception, development and
delivery, the product under development is reviewed at a

number of critical stages; and testing is performed
iteratively until the product achieves required functional
and performance standards. Review activities span inception
and development while testing activities span development
and delivery. We decompose the scheme of work for the
development phase into features; and we decomposer
features into tasks. The review process is iterative and a
feature is finished once it includes all quality standards.

Figure 2. Secure Software Development Overall Strategy

We relate principles and task to contextualize security
principles into a secure software development process.
Security principles define the objectives to achieve in the
software and the related tasks are the activities required to
achieve the objectives.
Moreover, we integrate the association between principles
and tasks with each phase in the software development
lifecycle as illustrated in Figure 3.

Figure 3. Framework for Secure Application Development.

Figure 3, captures in a single graphic, the primary
instrument used in our Framework for Principle-Based
Secure Software Development. Developers may consult the
Framework as a quick reference guide to ensure adequate
treatment of principles and associated tasks in each phase;
and to ensure the explicit integration of security principles
in the software development process.
4. A TESTBED FOR THE FRAMEWORK

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 5

We conceived a mobile application with in-built security
and usability, applicable to a wide range of user profiles.
Our application called viwi-cash or wvc (short for wireless
virtual cash) design enables authorized agencies to provide
financial services for clients without formal banking
infrastructure. In wvc operations, clients can make deposits,
withdrawals, sales, purchases and transfers as well as check
their balance and transaction details. Agent administrators
manage agency operation and establish all relevant
parameters. Agent administrators authorize specific agents
to operate the agency, are responsible for wvc
accountability reporting and for all activities that directly
involve clients. They create clients’ wvc accounts; and they
create and authorize all money transactions that involve the
agency and the client. The wvc system administrator is
responsible for configuring the mobile money system and
managing user roles and privileges. The wvc system
administrator also establishes the security parameters of
transactions and verifies account balances. All wvc users,
administrators and agent administrators, are registered with
the application. Figure 4, shows the mobile money entity
interaction model described above.

Figure 4 . Wivi Cash entity interaction model

Figure 5 illustrates the general wvc architecture with
particular reference to the points of vulnerability: the user,
mobile device, communications channel and server. User
behavior is the derived vulnerability from the interaction
between the user and the mobile device. Malicious code
(“malware”) and application design vulnerabilities present
direct as well as inherited security risks on the mobile
device. The wireless communications channel presents
ingress opportunities for security breaches. Security threats
related to the wvc server arise from information tampering
in the form of modification, theft and fabrication.

Figure 5. wvc Architecture from a security perspective.

wvc manages highly critical information and is subject to
direct economic losses in the event of unauthorized

modification, misuse or incorrect administration. The
implementation of security mechanisms in application
development is therefore essential. Following is an account
of the process applied according to the phases stated in our
framework: planning, analysis, design, coding, training,
deployment and testing (see Figure 3).

4.1 Planning
One practice that causes major security vulnerabilities is the
implementation of security features in the final stages of the
development process. An associated practice that is fraught
with problems is the expectation that the development team
will implement security attributes after the team completes
the functional requirements. Executing financial
transactions is particularly vulnerable to security breaches
and the consequences of such breaches can be catastrophic.
The most important security objective in wvc is therefore to
reduce to a minimum any risks of unauthorized or malicious
modification of system data (T1, P1).

The planning process articulates security policies and
establishes roles and functions for each member of the
development team. These policies, along with our
framework, defined a security strategy for the development
of the wvc system (T2, P4). We consulted with a board
range of stakeholders to ensure nothing was left to
assumption while defining the requirements. Stakeholders
gave the final approvals (T5, P5).

Broad stakeholder engagement also ensured that the
language used for developing the security requirements was
simple and fit for purpose (P6). Once the requirements were
defined and approved, we prioritized them according to
security criticality levels, the most critical being given the
highest priority.

4.2 Analysis
We identify and analyze risks (T9) from the definition of
security use cases and abuse cases of the system (T6, T7).
Similarly, we identify the classes of attacks to which the
system is susceptible (P25). Then we defined test cases to
appraise system performance with respect to specific attacks
(T8).

Once we identified the classes, we defined and categorized
vulnerabilities (T13). This activity was useful in modeling
system threats (T10), consequently we proposed strategies
for preventing attacks (T11). Having done this, we
identified the entire surface area of attack (T14), and we
proposed strategies for protection and attack minimization
(P14).

One of the critical issues of the analysis phase is that of
security problems resulting from user interaction with the

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 6

system. It is essential to articulate the roles of users and
define the manner in which they will interact with the
system. For each role in wvc, capabilities and authorizations
were defined to ensure that each user was assigned the least
amount of privileges to perform her/his tasks within the
system (T12, P18)

4.3 Design
For the functional design specification (T15), is important
to define security policies that take into account security
attributes and characteristics of the product (P2). The most
important policies identified in this point were related to
the formation of secure passwords, characteristics of the
user ID, login attempts and procedures to subscribe and
unsubscribe to wvc.

Through field investigations with a sample user base, we
established that one of the most pressing security concerns,
for prospective wvc users, is the potential loss of money.
For the protection of user information, it was essential to
establish a configurable set of security parameters.
Administrators set the values for the security parameters
depending on the needs of their agencies (P3).

User authentication is the most critical information for
design specification of wvc. In accordance with best
practice (P21), we separate user authentication from user
related information such as personnel information and
transaction history. Then we conducted vulnerabilities
analysis and threats analysis to implement only the
mechanisms necessary and sufficient to prevent successful
execution of each type of attack.

We implemented validation of entities by digital certificates
and challenge-response passwords, because in wvc
communications are performed using unsecure channels. An
easy access to mobile application requires a double-factor
validation: username and password; and PIN.

We consulted with users at all stages during user interface
design to maintain simplicity and operational system ease of
use (P7). We presented a feedback strategy incorporating a
prototype to prospective users and, based on the interaction
with the interface, we obtained valuable feedback about the
usability of the system. This feedback was important to the
final implementation version. Each time the user performs
any transaction that involves money balance modification,
wvc shows appropriate messages with all the information
related with the transaction. Once the user accepts, $m
shows a summary message stating the new balance state.

We developed a software architecture to meet all the
considerations and reinforce all rules established in the

previous phases of design (T16). Examples of security
decisions taken for the design (T17) were as follows:

We used a layered architecture to avoid a unique
vulnerability point (P8,P9). Grouping architecture
components and layers, depending on the type of services
that each component provides, allowed for overall system
compartmentalization (P12). Furthermore, we placed one of
the most valuable system assets (i.e. information) in just one
layer. The layer requires several validations prior grant
access to information.

We implemented relevant security mechanism (P10) for
each of the layers in the architecture. These mechanisms
included malformed or invalid information blocking in
input data; and granting access only to authorized users and
devices. Once we establish the design decisions, we
prioritized them (T18) and evaluated them (T19).

In order to identify the resources and trust boundaries (T20)
it was essential to identify the boundaries between the
logical components of the system and the infrastructure and
to separate them (P16). We defined element-wise security
policies (P15) to govern the interaction between each one of
the elements already separated. With these policies in place,
we were able to identify the trust elements, and minimize
them (P13) by categorizing external systems as insecure
(P11).

Similarly, for the information resources, it is important to
separate critical information from non-critical (P21)
information. We proposed different mechanisms for data
protection (P24) and we use unique identifiers to facilitate
the data usage audit by each entity in the system (P22).

4.4 Coding
The wvc implementation assumed that the code would be
broadly available for public scrutiny to avoid trusting that
security mechanisms were hidden in the code (P23) and
generally as a tool to ensure that coding does not inject
errors that lead to security vulnerabilities (T21). We
monitored coding (T22) to avoid defect propagation to later
stages and we performed revisions as necessary.

We made provisions to prevent the system from going to a
vulnerability state. Provisions include give feedback to the
user under any system failure, so he or she is able to make
an informed choice of actions (P27).

4.5 Training
The weakest link in the security environment is the user
(P17); therefore, we developed a comprehensive strategy for
end-user training (T23). We focus the training in knowledge

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 7

and skills necessary to practice secure behavior. The
training treated with preventative as well as reactionary
measures relating to a range of vulnerability exploitations.
In the fishery community, training was particularly
significant due to the low digital literacy of the inhabitants.
We will report our experience in community intervention in
other paper.

4.6 Development, Maintenance and Feedback
After software implementation, it is important to document
contingency action strategies. We created failover
procedures (P26); incidents plans (T24); operations and
maintenance instructions (T25); and administration manuals
(T26) to ensure appropriate levels of system availability. We
made use of transaction logs, which stored the activities of
all users in the system (T27) as a means to support security-
auditing mechanisms (p28)

4.7 Testing and Quality Assurance.
The results obtained from the analysis phase are important
to carry out the testing phase. In the analysis phase of wvc,
test cases were defined, a risk analysis was performed and
the types of possible attacks were identified (P25). Then, in
the testing phase a vulnerabilities verification strategy (T34)
was designed to test execution (T30) based on the risks
identified (T33).

We performed dynamic analysis (T31) on the prototype of
the system before its release. We also performed unit and
functional testing (T29) at the beginning of the testing
phase. Other types of testing that we conducted on the fully
functional prototype were penetration testing (T29) and
fuzz testing (T32)

4.8 Reviews
Reviews play an important role in the implementation of the
security features of the system during the initial phases of
the development project. For inception and development
stages, it is essential to define a strategy for security
inspections (T38). For the coding phase of wvc specifically,
we performed code reviews (T37). Based on the results of
the reviews we specify changes due to potential
vulnerabilities (T35). We also conducted security checks on
each feature already implemented (T39).

For the Design phase, we design a review strategy to assess
compliance with the elements defined in the inception stage
(T36)

5. CONCLUSIONS
Information Technology and especially mobile computing
allow us to reduce the digital divide between modern

societies and under development communities. However, the
increasing sophistication of mobile services is a potential
minefield of security vulnerabilities, particularly amongst
users with low digital literacy. In this paper, we presented a
framework for development of secure applications. In
particular we showed how the framework was applied
during the development of mobile money, an application
that brings on line financial services to under development
communities.

We consider that our framework is not exclusive for mobile
financial online applications like $m, but also our
framework is suitable for any kind of software product
requiring security as key property.

This project is the resulting effort of two teams working
under a grant provided by the Latin America and Caribbean
Collaborative Information and Communication
Technologies Research (LACCIR) federation: University of
West Indies (UWI) from Trinidad and Tobago; and
Tecnologico de Monterrey (ITESM) from Mexico. Even
though both teams worked side by side during the
construction of $m, the ITESM group focused on the
definition of the framework for secure software
development, and the UWI focused on applying a multi-
disciplinary strategy following our secure software
development framework in a low digital literacy community.

6. REFERENCES
[1] Allan, D., Hahn, T., Szakal, A., Whitmore, J., and Buecker, A.

2010. Security in Development: The IBM Secure

Engineering Framework. Red books.

[2] Chess, B., & Arkin, B. 2011. Software Security in Practice.
IEEE Security & Privacy Magazine, 9(2), 89–92.
doi:10.1109/MSP.2011.40

[3] Essafi, M., Labed, L., and Ghezala, H. Ben. 2007. S2D-ProM:
A Strategy Oriented Process Model for Secure Software
Development. International Conference on Software

Engineering Advances (ICSEA 2007), (Icsea), 24–24.
doi:10.1109/ICSEA.2007.59

[4] Fernandez, EB. 2004. A methodology for secure software
design. Proceedings of the 2004 Intl. Symposium on Web,
21–24-

[5] Horie, D., Kasahara, T., Goto, Y., & Cheng, J. 2009. A New
Model of Software Life Cycle Processes for Consistent
Design, Development, Management, and Maintenance of
Secure Information Systems. 2009 Eighth IEEE/ACIS

International Conference on Computer and Information

Science, 897–902. doi:10.1109/ICIS.2009.175
[6] Howard, M., & Lipner, S. 2006. The Security Development

Lifecycle: SDL: A Process for Developing Demonstrably

More Secure Software (p. 304). Redmond, Washington:
Microsoft Press.

[7] Howard, M., and LeBlanc, D. 2002. Writing secure code
(2nd ed., p. 800). Microsoft Press

13th LACCEI Annual International Conference: “Engineering Education Facing the Grand Challenges, What Are We Doing?”

July 29-31, 2015, Santo Domingo, Dominican Republic 8

[8] Khan, M. U. A., & Zulkernine, M. 2009. On Selecting
Appropriate Development Processes and Requirements
Engineering Methods for Secure Software. 2009 33rd

Annual IEEE International Computer Software and

Applications Conference, 353–358.
doi:10.1109/COMPSAC.2009.206

[9] Mallalieu, K., 2012. Networks for Development: Caribbean

ICT Research Programme, Trinidad and Tobago. Technica
Report. University of West Indies at St Augustine. May 1,
2012

[10] Mallalieu, K. & Sankarsingh, C. 2012. Contemplating Mobile

Applications for Small-Scale Fisheries in Trinidad and

Tobago. In Dunn, H. (Ed.) Ringtones of Opportunity: Policy,
Technology and Access in Caribbean Communications.
Kingston: Ian Randle Publishers.

[11] Mallalieu, K., and Sankarsingh, C. 2012. mFisheries: Lessons
in First Cycle Design of a Context-appropriate Mobile
Application Suite. International Journal of Technology and

Inclusive Education, 1(1), 9-16.
[12] Mohammed, E., Ferreira, L., Soomai, S., Martin, L. and Chan

A. Shing, C. 2011. Coastal fisheries of Trinidad and Tobago.
In S. Salas, R. Chuenpagdee, A. Charles and J.C. Seijo

(eds). Coastal fisheries of Latin America and the

Caribbean. FAO Fisheries and Aquaculture Technical Paper,
544, 315–356.

[13] Nunes, F. J. B., Belchior, A. D., and Albuquerque, A. B.
2010. Security Engineering Approach to Support Software
Security. 2010 6th World Congress on Services, 48–55.
doi:10.1109/SERVICES.2010.37

[14] Saltzer, J H, and Schroeder, M. D. 1975. The protection of
information in computer systems. Proceedings of the IEEE,
63(9), 1278–1308. doi:10.1109/PROC.1975.9939

[15] Saltzer, J. H. 1974. Protection and the control of information
sharing in multics. Communications of the ACM, 17(7), 388–
402. doi:10.1145/361011.361067

[16] Simpson, E. S., Howard, M., Corp, M., and Randolph, K.
2011. Fundamental Practices for Secure Software

Development 2ND EDITION A Guide to the Most Effective

Secure Development Practices in Use Today (p. 56).

[17] Sodiya, A. S., Onashoga, S. A., & Ajayi, O. B. 2006.
Towards Building Secure Software Systems, 3(2000).

[18] Software Engineering Institute. 2010. TSP-Secure. CERT,

Carnegie Mellon University. Retrieved from
http://www.cert.org/secure-coding/secure.html

[19] Stoneburner, G., Hayden, C., & Feringa, A. 2004.
Engineering Principles for Information Technology

Security. Retrieved from
http://csrc.nist.gov/publications/nistpubs/80027A/SP80027Re
vA.pdf

[20] Viega, J., and McGraw, G. 2002. Building secure software.
Boston: AddisonWesley.

[21] Wiesmann, A., Stock, A. van der, Curphey, M., and Stirbei,
R. 2005. A guide to building secure web applications and web
services. The Open Web Application . Retrieved from
https://www.owasp.org/images/b/b2/OWASP_Development
_Guide_2.0.1_Spanish.pdf

