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Abstract– Given the high market penetration of GPS-enabled 

cell phones, these units can be used as sensors to obtain an 

enormous amount of information with the potential to improve the 

availability of data needed to implement the Dynamic Traffic 

Assignment (DTA) algorithms and procedures used to maximize the 

network’s capacity utilization. Dynamic Origins-Destinations and 

Dynamic Mode Identification are two aspects of DTA that can 

benefit from the data gathered. The algorithms and procedures 

proposed in this paper consist of using GPS-enabled mobile phones 

as sensors (probes) to determine origins, destinations and modal 

components of trips without user input. The main algorithm is 

called the Mode Identification Algorithm (MIDA), designed to 

identify origins and destinations of the following modes: 

pedestrians, motorized vehicles and heavy rail. MIDA does not 

identify trips on buses and it was developed to identify heavy rail 

trips only on single route networks. MIDA is divided into two 

components, Identification of Heavy Rail (IDHR) under the 

limitation previously described and Identification of Stop, Walk and 

Motorized vehicles (IDSWAM). The IDHR component relies 

heavily on positioning, while the IDSWAM component is a fuzzy 

algorithm that relies on speed, direction and consistency. The 

algorithm was tested with data gathered on the field. MIDA was 

tested in its identification of several modes, and it showed to be 

capable of doing so. Testing MIDA with data from volunteers 

showed an error of less than 6% in the identification of modes over 

the time period of the tests. 

Keywords—GPS Tracking, Mode Identification, Origin-

Destination Matrices, and Fuzzy  Logic 

 

I.  INTRODUCTION 

The question posed in the title “Data, data, data – Where’s 

the data?” by Tate-Glass et al. [1] motivated this paper. Tate-

Glass et al. declared that research for Dynamic Traffic 

Assignment is active, but the data to apply it in real world 

situations is still under development or nonexistent. The 

solution proposed herein is the use of mobile phones as 

sensors (probes) to determine stops (origin and destination of a 

tour, or complementary stops) and mode components of a trip 

without user input. A new methodology was developed to use 

the data gathered using GPS-enabled mobile phones. 

Specifically, an algorithm that automatically identifies heavy 

rail, motorized vehicles, walking and stops components from 

mobile phone GPS data was designed and evaluated.  

GPS capable mobile phones are able to gather and send 

GPS data of their positions in real time. Hellinga et al. [2] sets 

out that determining traffic conditions from positioning data 

requires five steps: map matching, path identification, probe 

filtering, travel time allocation and travel time aggregation. 

Map matching and path identification steps consist of 

determining the position of a vehicle or traveler in the 

transportation network and the possible path utilized to change 

positions. GPS data is a collection of position and times that 

may be gathered at a particular rate to identify a path taken. 

Both of these steps can be done with available 

technology/methods. The challenge lies in probe filtering and 

travel time allocation.  

Probe filtering consists of determining the transportation 

mode being used. The data have to be analyzed to establish the 

transportation mode. Speed and routes are the principal 

variables to observe. When several links are used between data 

points, we need to estimate the travel time on each link. Travel 

time allocation refers to this estimation. Methods to estimate 

the travel time of each link between data points are also 

included in this step. In addition, when a change in travel 

mode occurs, we need to separate the travel time in each 

mode. This is also related to the time interval between points. 

The solution proposed herein is the use of GPS-enabled 

mobile phones (also called cell phones) as sensors (probes) to 

determine stops (origin and destination of a tour, or 

complementary stops) and mode components of a trip without 

user input. Previous research focused on obtaining the average 

speeds of vehicles [3], relied on user input to determine modal 

split [4] or relied on accelerometers to determine whether the 

user was walking, running, biking or riding a vehicle [5].  

Recent developments show advances in the area of automatic 

mode estimation. In the case of González et al. [6] their neural 

network algorithm works only for single mode trips with the 

users informing the critical points of the trip. Another case is 

the study by Zhang et al. [7] that integrated GPS data from 

users, itinerary of users and GPS data from buses to identify 

bus trips. 

To determine stops (origin and destination of a tour, or 

complementary stops) and mode components of a trip without 

user input this paper uses the Mode Identification Algorithm 

(MIDA). MIDA is an algorithm designed by Gómez-Torres [8] 

utilized to identify the origins and destination of trips, and 

several transportation modes. The modes identified by MIDA 

are pedestrians (Walk), motorized vehicles (Car) and heavy 

rail (HR). From the research done, to identify buses, GPS data 

directly from the buses seems to be required [8].  
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According to the Electronic Privacy Information Center 

[9], individuals must opt-in (not be entered by default) and be 

informed that data (in this case GPS data) is being collected. 

The data must be unidentified and protected, not only from 

criminal use, but also from misuse by those collecting it. Self-

regulation is common for companies dealing with private 

personal data. However, comprehensive legislation must be 

enacted to legally protect the privacy of individuals, instead of 

self-regulation. Privacy issues must be evaluated deeply, but 

this paper will not deal with those issues. 

This paper will show the evaluation of the MIDA 

algorithm with data gathered in Puerto Rico. The data was 

gathered by the principal researcher and by five (5) volunteers. 

The data was gathered while driving cars, walking, riding a 

single route heavy rail system and during stops. 

II. THE DATA AND ITS SOURCES 

In recent years, studies on the use of mobile phones for 

traffic studies are becoming more common due to the 

characteristics and availability of mobile phones. The 

characteristics that seem to be capable of helping to make 

traffic studies are: 

1) Sample size: USA population was about 307 million 

people by July 2009 [10]. According to the Cellular 

Telecommunications Industry Association (CTIA) there are 

270.3 million of wireless subscribers in the USA alone. They 

indicate that the wireless penetration is 87% of the total USA 

population [11].  

2) Development in location strategies: Mobile phone 

providers in the U.S. are increasingly using GPS to detect the 

location of their mobile phones if a call to 911 is made. This 

responds to the FCC’s E9-1-1 rule that require the mobile 

phone providers to be able to locate their mobile phones with 

an accuracy of at least 50 to 300 meters [12].  

3) Usage pattern: Most mobile phone users carry them 

everywhere and do not turn the mobile phone off during trips. 

The data was gathered with three (3) different mobile 

phones a Nokia E71, a Nokia 5800 and a Pharos Traveler 619. 

All of these mobile phones have integrated GPS and were 

connected to the T-Mobile network of Puerto Rico. The data 

gathered with the mobile phones consisted in locations 

(latitude and longitude) and times. Each data point consists of 

a 3-tuple (time, latitude, longitude). Each data point was 

gathered at the fastest rate allowed by those mobile phones, 

which turn out to be between 1 and 2 seconds. The data used 

for this paper was gathered in Puerto Rico’s San Juan 

Metropolitan Area. A GPS application for mobile phones was 

utilized to gather the data and was saved in the phone itself. It 

is also worthy to point out that the trips where done with 

reality in mind, but trying to travel near the heavy rail route in 

other transportation modes to challenge the algorithm as much 

as possible.   

Several transportation modes were tested in this study 

(Walk, Car, Bus and HR). Origins and destinations (Stops) 

were tested too. The data was taken in the form of designed 

multimodal trips and “real world” data gathered with the help 

of volunteers.  

The multimodal trips were randomly designed to have 

changes from all modes to all modes. These trips are not 

representative (typical) trips. The multimodal trips were 

designed to have all modes and were intentionally designed to 

be near the route of the heavy rail system (Tren Urbano) of the 

San Juan Metropolitan Area (SJMA) of Puerto Rico. Four (4) 

multimodal trips were designed, two (2) for development of 

the algorithm and two (2) for internal validation. 

The “real world” data was gathered with the help of five 

(5) volunteers. The volunteers were asked to record GPS data 

on their mobile phones and keep a log of all the changes in 

mode made by them during one week. 

A. Selecting Data Collection Rate  

Speed is one of the most important parameters to identify 

the transportation mode used. The speeds in this section were 

calculated with 2 points, where each point contains the 

information of latitude, longitude and time. To calculate 

speeds, the distance between points was calculated using the 

geodesic distance of the earth ellipsoid [13]. Elevations were 

ignored in the calculations of speed. The speed is calculated 

with the following equation: 
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  (1 ) 
Ignoring the elevations becomes a systematic error, but its 

magnitude is very low. Considering a road segment with a 

slope of 10% (which is a rather high percentage), a vehicle 

moving at 100.5 km/h (as measured in an instant) will appear 

to be moving at 100 km/h if the height is ignored. Also with 

the current GPS technology available in mobile phones the 

errors in elevations are high; as a result of both of these factors 

it is better to ignore the elevations.  

Also, we wanted to determine the rate that should be used 

to gather data without losing important information. To that 

purpose Figure 1 and 2 were constructed. The first data point 

(or Data Point 1) will be called DP1 and the second DP2, 

therefore the n data point will be called DPn. This test was 

performed on May 24, 2010. In Figure 1, the curve marked as 

1 denotes speeds calculated with each data point, where the 

first speed marked is calculated with the 2-tuple (DP1, DP2) 

and will be denoted as S1. The second speed marked, S2, is 

calculated with (DP2, DP3), therefore in general the following 

relation applies: 

nS,DPDP n1nn  ;)f(
     ( 2 ) 

Around data point 815 (Figure 1 and Figure 2) an 

unusually high speed (120 mph) was found and it was related 

to a data point with an unusually high error. 

In Figure 1 the curve marked as 10 denotes speeds 

calculated with each data point where the first speed marked is 

calculated with the 2-tuple (DP1, DP11) and will be denoted as 

S1. The second speed marked, S2, is calculated with (DP2, 

DP12), therefore in general the following applies: 
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nS,DPDP n10nn  ;)f(
    ( 3 ) 

Therefore, in Figure 1, the relations for the curves marked 

as 30 and 60 appear in equations (4) and (5). 

nS,DPDP n0nn  ;)f( 3     ( 4 ) 

nS,DPDP n0nn  ;)f( 6     ( 5 ) 

Figure 1 Speeds calculated using all the data 

Figure 2 Speeds calculated with a selection of data 

For Figure 2, the relations are similar, but not all data 

points were used. The curve marked as 1 is exactly the same 

as the curve marked 1 in Figure 1. The first speed, S1, of the 

curve marked as 10 is calculated with the 2-tuple (DP1, DP11), 

the second speed, S2, with the 2-tuple (DP11, DP21); therefore 

the following relation applies: 

iinS,DPDP i10nn  );1(101;)f(
    ( 6 ) 

Therefore, in Figure 2, the relations for the curves marked 

as 30 and 60 appear in equations (7) and (8). 

iinS,DPDP i0nn  );1(301;)f( 3    ( 7 ) 

iinS,DPDP i0nn  );1(601;)f( 6     ( 8 ) 

Comparing Figure 1 and Figure 2, we can see that at 

different intervals not all the data is needed. The shapes of 

both speed charts show that we were able to select greater 

intervals without losing critical information. In the Figure 2, 

the curve marked as 10 (skipping 10 data points) seemed to be 

adequate (by visual inspection); therefore, gathering data at an 

interval of between 10 and 20 seconds seemed to be 

appropriate (remember that each data point is gathered every 1 

to 2 seconds). Even gathering data at an interval of 30 data 

points (every 30 to 60 seconds) is possible without losing most 

of the details. Also, considering the Nyquist-Shannon 

sampling theorem makes it 

difficult to justify a sampling 

rate of more than 60 seconds 

since it is possible for a modal 

component of a trip to be less 

than 2 minutes. 

III. THE MODE 

IDENTIFICATION 

ALGORITHM (MIDA) 

This section deals with the 

procedures and ideas applied 

to create the Mode 

Identification Algorithm 

(MIDA). MIDA is an 

algorithm designed to identify 

the modal split of a trip with 

GPS information gathered 

from mobile phones (or any 

other GPS enabled device). 

MIDA intends to classify 

between stops, walk, 

motorized vehicles, and heavy 

rail. MIDA has two 

components, IDHR and 

IDSWAM. IDHR is the 

Identification of Heavy Rail 

and IDSWAM is the 

Identification of Stops, 

Walking and Motorized vehicles. 

A. Identification of Heavy Rail  

The component of MIDA designed to identify the use of 

heavy rail in a trip (from now on IDHR) will be shown in this 

section. The IDHR component relies on GPS data (gathered 

from mobile phones) and polygons representing the heavy rail 

system (in this case the Tren Urbano of Puerto Rico). Even 

though the polygons were done with the Tren Urbano system 

in mind, the principles applied seem to be appropriate to 

similar systems. The polygons and the principles to make them 

will be shown in the next subsection, followed by a subsection 

explaining the IDHR component. 

A.1. Representation of the Heavy Rail System  

The Tren Urbano system is a heavy rail system that 

provides transportation in the San Juan Metropolitan Area in 

Puerto Rico. The system consists of sixteen (16) stations with 

two (2) of those stations underground. Two (2) segments of 

route are aboveground and one (1) segment underground, 
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therefore there are two (2) transitional areas (from 

aboveground to underground). Figure 3 shows examples of all 

the types of polygons designed to identify heavy rail. 

Figure 3 Types of Polygons 

Designing the polygons require experience and 

understanding of the precision error of the GPS. GPS data 

needs to be observed on the map to be able to shape the 

polygons. The size and shape of the polygons depend on the 

position of the station (or route), nearby buildings, nearby 

roads, type of station and GPS error. The researcher tried to 

make the polygon as small as possible, while taking into 

consideration the precision error of GPS. For IDHR to be 

effective, careful consideration must be applied in the design 

of the polygons. The next subsection explains the IDHR 

component of MIDA. 

A.2. IDHR Algorithm  

The IDHR component of the MIDA algorithm is a 

function of GPS data (latitude, longitude and time) and the 

polygons discussed in the previous section. The concept of 

IDHR consists on identifying each heavy rail segment of a 

trip. A heavy rail segment is defined as traveling in a train 

between two consecutive stations. Figure 4 shows a simplified 

flowchart of the IDHR component of MIDA. When the GPS 

data show that a station is reached, the IDHR component 

verifies if it travelled through the route polygon from another 

station. 

The flowchart in Figure 4 is composed of six (6) sections. 

Each of those sections does a specific job within the IDHR 

algorithm. Information on the details of each section follows: 

• Section 1 – This section tests GPS data to find if it is 

located inside a station polygon (primary station). This section 

may end the algorithm or continue to section 2. 

• Section 2 – This 

section searches GPS 

information back in the 

database until another 

station is found. To 

continue searching back 

GPS data cannot leave 

routes or transitional areas. 

This section may go to 

section 6, instead of 

section 3, if another 

station is not found. 

Another station must be 

found (without exiting the 

boundaries) to be able to 

establish HR mode 

occurred. 

• Section 3 – This 

section declares that Mode 

is heavy rail (Mode = 

HR), after the appropriate 

conditions are met. The 

“T” represents the quantity 

of points required to add at 

least 1.25 minutes. This 

section always goes to 

section 4. 

• Section 4 – This section checks if the secondary station is 

an underground station. For underground stations the next 

section is section 6. For aboveground stations the next section 

is section 5. If the secondary station is an underground station, 

then the last data point found inside the underground station 

polygon will be marked as the beginning of the HR leg of the 

trip. If the secondary station is an aboveground station, the 

first data point found inside its polygon is considered the 

beginning of the HR leg of the trip. 

• Section 5 – In this section all GPS data that remains inside 

the secondary station is declared as heavy rail. This section 

always goes to section 6. 

• Section 6 – This section searches for the next position that 

is outside the primary station. This section may terminate the 

algorithm or go to section 

There are rules applied in the algorithm that help to avoid 

over and under identification. First as soon as an initial station 

is reached heavy rail mode begins, but ending “T” data points 

after reaching the last station (see section 3 of Figure 4). That 

“T” provides time for the user to exit the station and ending 

the heavy rail mode. “T” can be adjusted for each station 

individually. The adjustment can be done by observing the 

average time it takes users to exit the station. Therefore, 

evaluating each station individually with data from the general 

public is required for the final implementation. For the 
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purpose of this study 1.25 minutes was selected as an average 

for “T” and was not tailored to each station. 

Figure 4 Simplified flowchart of the IDHR component 

The second rule is that the first data point found in an 

underground station (USTU) becomes the start of heavy rail 

mode (see section 4 of Figure 4). This is done because there is 

no GPS connectivity inside an underground station. Notice 

that the first data point found is the last time when the mobile 

phone GPS is available before entering an underground 

station. 

The third rule is that each leg is dealt with separately, 

therefore if one data point is outside of the appropriate 

polygons (see section 2 of Figure 4), only part of the trip will 

be missing. If a trip requires several legs, the legs are unified 

automatically by the IDHR 

component of the MIDA 

algorithm. 

A.3. Identification of Stops, 

Walk and Motorized Vehicles 

The difference between 

stop, walking and motorized 

vehicles (in terms of GPS data) 

is the travelling speed. 

Therefore, in order to identify 

them, the researcher needed to 

evaluate them together. The 

identification of stop and 

walking (without motorized 

vehicles) was attempted, but it 

failed when vehicles travelled 

at low speeds. Therefore all 

three modes were identified at 

the same time with the 

approach described in this 

section. 

As seen in Figure 5, GPS 

data is not precise enough to 

ensure that a person at rest 

(stopped) will appear to be 

travelling at exactly 0 mph. At 

the same time walking speed 

does not exceeds 5.7 mph (9.1 

km/h) and the lowest possible 

speed can be practically 0 mph, 

being the lowest comfortable 

speed for any group of 

age/gender 2.85 mph (4.6 

km/h) [14] Motorized vehicles 

speed range from 0 mph (0 

km/h) to more than 70 mph 

(113 km/h). Hence, the three 

modes overlap at low speeds. 

At the same time, Figure 5 

shows that a higher speeds the 

effect in the velocity vector of 

the GPS precision error is 

reduced. 

The IDSWAM component of MIDA relies on fuzzy logic. 

Boolean logic deals with true or false statements, but fuzzy 

logic deals with degrees of truth and is utilized in complex 

decisions. Stops, walk and MV have similar speeds in the low 

end of the spectrum. Also, the precision error may increase the 

calculated speeds of stops and walk. Those facts start showing 

the picture of a complex decision. 
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Figure 5 GPS precision error 

Figure 6 shows the flowchart of the IDSWAM component 

of MIDA. After applying a series of fuzzy rules to the GPS 

data, the results are the memberships of each data point in 

terms of stops, walk and MV. Then those memberships pass 

through the defuzzification process. The defuzzification 

process consists of averaging the memberships of 5 data points 

and selecting the classification with the highest membership. 

In order to improve consistency, a factor based on continuous 

classification is given to the memberships. The last step is the 

stabilization process, where the most frequent classification of 

5 data points is declared. The last step is intended to aid the 

IDSWAM component to provide steady classifications. 

 
Figure 6 Simplified flowchart of IDSWAM 

One of the factors that aid in the identification is the 

direction of the velocity vector. The direction during a stop (if 

data is available), tends to be erratic (see Figure 5 again). In 

the case of the direction of MVs, it tends to change slowly. 

Still, when MVs are waiting at intersections their perceived 

direction can change abruptly (precision error). 

A mobile phone registered at high speeds for a long time, 

can be identified as an MV. Also, a mobile phone registered at 

low speeds with erratic velocity and direction for a long time, 

can be identified as being stopped. When trying to use 

Boolean logic one of the problems is setting the values. How 

high should the speed be? How erratic should the direction be? 

This is when fuzzy logic becomes a useful tool. 

A set of fuzzy rules relating the speed (in km/h) and the 

change in direction (in degrees) were done to design the 

membership functions for Stop, Walk and Motorized Vehicle 

(MV) as shown in Figure 7, Figure 8 and Figure 9, 

respectively.  

 
Figure 7 Stop membership function 

 
Figure 8 Walk membership function 

 
Figure 9 Motorized Vehicle (Car) membership function 
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IV. COMPUTATION OF ERROR 

To understand the capacity of MIDA to correctly identify 

modes, five measurements of errors were used. These 

measurements are the following: 

• Missed Identification (MID) Error – This error is the 

difference between observed time in a mode and the 

correctly identified time in that mode, divided by the 

observed time in that mode (see equation 9). MID error 

shows the proportion of time a mode is not identified in 

terms of all the time the mode was observed. In the plots 

this error is portrayed in black. 
MIDmode=(Obs Timemode–Correct ID Timemode) /Obs Timemode (9) 

• Over Identification (OID) Error – This error is the 

difference between all the time a mode is identified and 

the correctly identified time in that mode, divided by the 

all the time that mode is identified (see equation 10). OID 

error shows the proportion of time a mode is incorrectly 

identified in terms of all the time the mode was identified. 

In the plots this error is portrayed in red. 
OIDmode=(All ID Timemode –Correct ID Timemode )/All ID Timemode (10) 

• General Missed Identification (GMID) Error – This error 

is the difference between observed time in a mode and the 

correctly identified time in that mode, divided by the 

complete time of the study (see equation 11). GMID error 

shows the proportion of time a mode is not identified in 

terms of the complete time of the study. 
GMIDmode=(Obs Timemode –Correct ID Timemode)/Complete Time (11) 

• General Over Identification (GOID) Error – This error is 

the difference between all the time a mode is identified 

and the correctly identified time in that mode, divided by 

the complete time of the study (see equation 12). GOID 

error shows the proportion of time a mode is incorrectly 

identified in terms of the complete time of the study. 
GOIDmode=(All ID Timemode–Correct ID Timemode)/Complete Time  (12) 

• General Error (GE) – This error is the sum of the GOID 

error (or GMID error) for all modes (see equation 13). GE 

shows the proportion of time any mode is incorrectly 

identified in terms of the complete time of the study. 

Notice that the sum of GOID or GMID provides the same 

results. This is due to the fact that in the same multimodal 

trip, all the instances that were identified incorrectly can 

be accounted as a Missed Identification (MID) of the 

observed (real) mode or an Over Identification (OID) of 

another mode. 
GE = ∑ GOIDmode = ∑ GMIDmode; for all modes (13) 

 The summary of the results obtained using MIDA of the 

multimodal trips (not “real world”) are shown in Table 1. The 

General Error (GE) is 16.3%. The GE, while useful to identify 

the level of the error for a single multimodal trip, it is more 

useful when dealing with data from volunteers or “real world” 

data. The GE is more useful with “real world” data because it 

represents the level of error expected from the widespread use 

of MIDA. 

It is important to notice that the multimodal trips done by 

the researchers had more transferences from mode to mode 

than ordinary trips (as designed). Also, the multimodal trips 

were designed to be difficult to identify.  

In terms of MID, OID and GMID, the percentage of error 

of Walk is the highest. This is also related to the transferences 

as well as the inherent difficulty of identifying walking. In the 

case of Stops (the second highest in OID and the highest of 

GOID), the error can be related to the fact that other modes 

include stops. Still, MIDSTOP, MIDCAR, and MIDHR were under 

19%, while OIDCAR and OIDHR were under 11%. 

Table 1 Summary of MIDA results 

 

The results obtained using MIDA with data from 

volunteers will be provided for each volunteer. The five (5) 

volunteers that gathered data were identified with a number 

between 1 and 5. All of them live in Puerto Rico. 

Volunteers 1 to 3 spend most of their time in the San Juan 

Metropolitan Area, while volunteers 4 and 5 spend most of 

their time in the West region of Puerto Rico. Four of the 

volunteers have a job. Four of them own a car. 

Volunteers were between 25 and 35 years old and all of 

them own a mobile phone. Volunteers 1 and 2 used mobile 

devices with iOS (the OS designed by Apple Inc.), volunteer 3 

used a Nokia E71 (Symbian OS) and volunteers 4 and 5 used 

mobile devices with Android (the OS designed by Google). 

From the comments of the volunteers, battery life of the 

Android devices seems to be longer, when compared to the 

other devices. 

It is important to note that the General Error (GE) is the 

error for the whole day of data provided by the volunteers and 

none of them had a GE over 6%. 

Volunteers stated that it was difficult to remember to 

record each change in mode. Volunteer 3 made more mistakes, 

recording changes in mode, than the rest of the volunteers. 

Volunteers 4 and 5 were noticeably better having only 10 

mistakes between both of them. 

Sometimes the volunteers remembered to report a change 

in mode a few minutes after the fact. Those estimations tended 

to be off, by more than 3 minutes. In one instance, volunteer 2 

estimated a change in mode occurred 15 minutes before, but 

after revising the data in Google Earth the change occurred 30 

minutes before. The most extreme case was with volunteer 3, 

in which a mode change estimated to have occurred 30 

minutes before, was in fact one (1) hour before.  

  

Mode

Missed 

Identification            

(MID %)

Over 

Identification 

(OID %)

General Missed 

Identification     

(GMID %)

General Over 

Identification 

(GOID %)

Stop 15.08 27.9 3.61 8.8

Walk 27.36 27.84 4.86 4.31

Car 18.55 10.88 4.45 2.25

HR 13.99 4.6 3.39 0.94

16.3General Error =

Complete Data Set
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V. CONCLUSIONS 

The main objective of this study was to develop a model 

for the estimation modal split using mobile phone without 

user-inputs. The Mode Identification Algorithm (MIDA) was 

developed to determine origins and destinations with the 

modal components of trips from mobile phone’s GPS data. 

MIDA identifies origins and destinations (Stops), pedestrians 

(Walk), motorized vehicles (Car) and single route heavy rail 

(HR). MIDA does not identify trips on buses (Bus).  

The identification of Stops (origins and destinations) had 

the most errors with the data gathered on the multimodal 

trips. Transfers between modes tend to have higher errors, 

therefore the error related to Stops were higher than with “real 

world” data. Data from volunteers showed a lower error 

related to Stops. A precision error associated to GPS 

technology was utilized to help identify Stops. But, at the 

same time errors identifying Heavy Rail were caused by the 

precision error. 

The identification of Walk was more difficult due to the 

fact that when a transfer occurs, usually walking also occurs. 

Short walks occur frequently during the day. For most people 

those short walks are related to parking location. Identifying 

Car required a stabilization process to avoid misidentification 

(MIDcar). Car may travel at very low speed or be stopped. The 

stabilization process at the same time increased the 

misidentification of short stops (MIDstop). The identification of 

Heavy Rail (HR) had a smaller error. This is due to the fact 

that Heavy Rail has its own route and stations. 
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