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Abstract– In this paper we use the method of discrete 

hydrodynamic singularity and a condition on the velocity normal 
component at the flow’s boundary in order to reduce the problem of 
ideal liquid flow around arbitrarily positioned bodies to the solution 
of an appropriate linear equations with a block matrix  structure. 
Having applied discretization in such a way that the resulting 
system’s matrix boasts an implicit diagonal dominance, one can 
establish the convergence of a block Jacobi iteration method to the 
exact solution of the system. The algorithm’s efficiency is 
illustrated by a sample computing of hydrodynamic pressure on the 
ring blades of a hydraulic turbine. 

Keywords-- Method of discrete hydrodynamic singularity, the 
implicit  diagonal dominance, hydrodynamic charges. 

 
I.  INTRODUCTION  

Nowadays, before developing and assembling hydraulic 
machines, the manufacturers seek to elevate their efficiency by 
making use of the advanced theory and computational 
experiments [1]. Thus obtained results are extremely handy for 
the further improvement of various properties of the produced 
machines, such as their power efficiency, cavitation immunity, 
compression charges, as well as the parameters of the non-
stationary flow around a rotor’s main body. The latter means 
that the quite expensive physical and technical experiments 
related to the hydraulic machines could be replaced with much 
cheaper numerical tests, which, in turn, would accelerate the 
achievement of the desired characteristics of the newly created 
machine samples. 

 
Therefore, the quality requirements to the numerical 

results, as well as the challenges related to the numerical 
solution of the problem of flow around solid bodies have 
attracted a lot of attention of many researchers worldwide 
since long. Solutions of some problems related to those 
examined here can be found are in [1] – [15], [18], to mention 
only few. 

It is well-known that to study a potential flow of an 
incompressible fluid around a rotor, one needs to solve an 
appropriate linear system obtained by a discretization method. 
The system’s dimension depends upon the number of discrete 
nodes selected on the profile. Computational experience 
shows that in order to guarantee any acceptable precision the 
number of computation nodes must quite large. The latter 
leads to considerable challenges to the numerical 
implementation of the existing algorithms, even when cut-of-
the-edge computers are used. The other difficulties that arise 
include, for instance: (i) the problem of flow around the stator 

columns and the regulating ring blades of a hydraulic turbine 
positioned in a volute chamber; (ii) the problem of flow 
around profile grids that is non-uniform at the inlet, and (iii) 
the problem of hydrodynamic interaction of a series of profile 
grids with arbitrary space positions. Close to those listed is 
also the problem of flow around aircraft with a complex 
structure of the components, etc. A characteristic feature of the 
equation system associated with the problem in question is its 
block structure, each block consisting of elements relevant to 
only one of the bodies in the flow. Taking an advantage of this 
property, we present an iterative procedure solving such a 
system. 

 
The main idea of the procedure is the successive solution 

of the equations of each block, which is physically equivalent 
to solving the problem of flow about isolated bodies in a 
perturbed flow. In what follows we prove that if the complete 
matrix of the equation system is strictly diagonally dominant, 
then the iterative process converges to the exact solution of the 
system, being started from an arbitrary initial approximation.  

 
Our paper is arranged as follows. In Section II, we state 

the problem of flow past the blades of the regulating ring of a 
hydraulic turbine taking into account the mutual effects of a 
volute chamber, buttresses, and stator columns by restricting 
ourselves to the case of only 2-dimensional flow. Section III 
presents the block iterative algorithm solving the linear 
algebraic equation system with its convergence properties 
established. At last, Section IV provides a numerical example 
related to a real-life hydraulic turbine. Conclusions, 
Acknowledgement and References finish the manuscript. 

 

 II. PROBLEM SPECIFICATION 

Following mainly the path of the authors’ previous 
publications [16] and [17] assume that the fluid flow is 
stationary and potential within the 2-dimensional cross-cut of 
the mid-section of the volute chamber, stator, and the 
regulating ring of a turbine. Given the normal velocity

 0nV f L  at the inlet section 0L one should determine the 
distribution of velocity, 0L  pressure and hydrodynamic loads 
at the regulating ring blades, stator columns, buttresses and 
volute chamber, as well as at any point of a plane section 
across the flow (see Fig.1). In order to do  
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Fig.1. A hydraulic turbine cross-section 

that, we use again (cf., [16] – [17]) the method of modeling a 
potential flow by a system of hydrodynamic singularities and 
replace the flow surface by a system of vortex contours. We 
model the impeller ring by a source and a vortex of intensities 
Q and Г, respectively, positioned in the center of the volute 
chamber, as determined by the residue of an analytic function 
at the singular point. Note that the normal velocity value nV  is 
considered as given at any point of the contour L, which is the 
sum of all the turbine parts 1iL ,i , , N  , including the 
regulating ring blades, stator columns, buttresses, and volute 
chamber. Therefore, we can write down the expression for nV   
in the following form: 

       n x yV V sin V cos f L ,                                       (1)  

where   is the angle between the tangential (supporting) line 
to the contour L and the Ox axis. Now we can obtain a 
singular integral equation for the vortex sheet density  S . 
In equation (1), the velocity components with respect to the 
coordinate axes are calculated as follows: 
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Here, x and y are the Cartesian coordinates of the points where 
the velocity is computed, while  and  are those of the points 

at which hydrodynamic singularities are positioned, while 
   2 22R x y     . 

      Now applying the method of discrete hydrodynamic 
singularities (cf., [8], [13]), which is also well-grounded in 
[12], one reduces equations (1) – (3) to the following system 
of linear algebraic equations:  
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        (4)                                                                        

Here, N is the number of computation points and M is the 
number of discrete sources modeling the normal velocity 
profile at the inlet section 0L , while 0x  and 0y  are the 
coordinates of the point at which the source Q and the vortex
 are located. The velocity of the flow is zero ( 0nV  ) on the 
volute chamber surface, while  0nV f L  at each point of the 
inlet section. Finally, the following integral equations must be 
valid in the context of the considered problem: 

                   0 1
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The existence and uniqueness of the solution to the latter 

equations are ensured by the requirement that the Chaplygin-
Zhukovskii postulate be true for the flow considered, in one of 
the forms usual for the hydraulic machine in question. Having 
solved equations (4) for  j j S  , 1j , ,N  , and , one 
can determine the velocity components at any point (x, y) 
using equations (2) and (3). The values of the dimensionless 
pressure P , the tangential force value xc and that of the 
normal force yc at a chord of the unit length of each element

1iL ,i , , N  , the moment quotients mc  (with respect to the 
inlet edge of the body) and 0c  (with respect to the rotation axis 
of the regulating ring blade) are calculated by the formulas 
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        0 m y c x cc c c x c y .  
                                                

 
Here,  and c cx y are the coordinates of the rotation axis of the 
regulating ring blade in a dimensionless coordinate system, the 
Ox axis of which coincides with the chord, and the origin is at 
the inlet rim;   and  in inP V  are the pressure and velocity 
values, respectively, at the inlet section. Numerical solutions 
of the system of equations (1) – (7) is obtained through the 
standard discretization procedure (cf.,[16] – [18]) and then 
solving the (linear) system of equations (4).                       

 

III. SOLUTION OF THE LINEAR SYSTEM 

In order to solve the system of linear equations (4) we 
propose a modification of the simple iteration and/or Gauss-
Seidel methods and prove their convergence for the problem 
in question. First, we consider the following m n -matrix A 
(here, we assume that m n ): 
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By a specially arranged discretization procedure we can 
guarantee that the matrix entries boast the following 
properties: 

 
1) The diagonal entries are positive ( 0 1iia ,i , ,m   ), 
while the sub-diagonal ones are, vice versa, negative 
( 1 0  2i ,ia , i , ,m    ). 
2) The diagonal and sub-diagonal entries’ absolute values are 
much greater than those of the rest of the matrix’ elements. 
More exactly, let the inequalities listed below hold: 

                   

11 1
2

22 12 11 21 1 2
3

33 13 23 11 21 31 22 32 12

1 2 3
4

                                                                                                  

n

j
j

n

j j
j

n

j j j
j

mm

a ,

a a a ,

a a a a a

,

a









    

        

  






  



  

   

  

1

11 21 1
1 3

22 32 12 2
4

2

1 1 1 1
1 1 1

m m

km k
k k

m

k
k

m n m

m ,m m,m k,m kj
k j m k

a a

a a

a a .



 





   
   
















     



     


   


 



  



 

 

 

    (9)                                                                                            

 
In our previous papers [16] and [17], property (9) was 

called the concealed strict diagonal dominance (CSDD) in 
matrix A. Below we will show why this name (or, the implicit 
strict diagonal dominance, ISDD) is appropriate, and how it 
helps one prove the convergence of the simple iteration and/or 
Gauss-Seidel methods solving the linear equation Ax b  for 
an arbitrary mb R .  

 
First of all, we note that property (9) is an extension of the 

classical diagonal dominance. Indeed, in the particular case 
when 11 21 22 1 0m,m mma a a a a a       , matrix A is 
evidently not strictly diagonally dominant even if all 0ij  . 
However, property (9), which in this particular case reduces to 
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clearly holds if the absolute value of the diagonal entries a is 
much larger than those of the non-diagonal elements ij . For 
instance, property (10) is valid when  
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1 2
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holds. 
 
Now we will show that the ISDD property (9), on the 

other hand, implies the (strict) diagonal dominance of another 
matrix D related to the original matrix A in such a way that the 
systems Ax b  and Dx g are equivalent, i.e., their solutions 
coincide. In order to do that, denote by B the principal square 
submatrix of matrix A:  
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 In [17], the following result was established: 
 
Theorem 1. As explained in [17]. If an m n  matrix A 

having structure (8) satisfies condition (9), then its principal 
square submatrix B has the inverse 1B . Furthermore, the 
matrix  
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is strictly diagonally dominant (in the classical sense), that is, 

1
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When proving Theorem 1 in [17], it was demonstrated 

that if matrix A has the ISDD property (9) then an auxiliary 
matrix 1A  generated by a special transformation of A boasts 
the (classical) strict diagonal dominance. The said 
transformation is described as follows: to obtain the matrix 1A , 
one adds the top row (row 1) of matrix A to its row 2; then the 
newly updated row 2 is added to 3 of the same matrix, and so 
on. The sum of all rows 1 through  1m is finally added to 
the bottom row m of the original matrix A, thus resulting in the 
auxiliary matrix 1A . Now it is not difficult to see that the 
transformation in question can be represented in the matrix 
form as shown below: 

                       1A LA,                                                 (15) 
where  L is the lower triangular (square and invertible) matrix  
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the inverse of which can be found explicitly as follows: 
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All those results can be collected in the lemma below. 
       
Lemma 2. The inverse to the lower triangular matrix L 
defined by (16) is the lower bi-diagonal matrix 1L  shown in 
(17), whose entries are determined by the explicit formula: 
 

          
1 if 
1 if 1 1 1
0 otherwise.

ij

, i j;
l , i j , j , ,m ;

,


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

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Proof. The proof is straightforward: we left-multiply matrix L 
by the matrix (17) – (18). Indeed,  i, j  entries of the product 

1L L are defined by the inner product of row i  of matrix 1L

by column j  of matrix L. Now since column j  of matrix L 
contains zero entries from the top row 1 to row 1j  , and has 

units from row j downward, while row j  of matrix 1L

comprises zero entries except for columns 1j   and j  where it 
contains  1  and 1, respectively, then it is clear that the j -th 

diagonal entry of 1L L is 1 for all 1j , ,m  . Similarly, it is 
easy to see that the non-diagonal entries  i, j ,i j , of the 

product 1L L  are all zero, because both non-zero entries of 
row i  of matrix 1L , i.e.,  1 and 1, are multiplied by zero 
(when i j ) or by 1    (if i j ). The sum of these two 
products equals zero in both cases, which completes the proof: 
indeed, the above arguments allow one to conclude that the 
product 1L L  is the m m  identity matrix I. ■                 
        
       Now we are in a position to formulate and prove the 
following interesting result for the linear systems of equations 
and their (rectangular) matrices.  
 
Theorem 3. There exists a one-to-one correspondence 
between the m n  matrices A ( m n ) with the implicit strict 
diagonal dominance (ISDD) and the m n  matrices 1A
boasting the (classical) strict diagonal dominance (SDD). 
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Moreover, this correspondence is established with left-
multiplying the matrix A by the lower triangular matrices L 
and 1L  defined by (16) and (17) – (18), respectively. Finally, 
each linear equation Ax b with matrix A having ISDD has a 
unique solution for any right-hand side vector mb R . 
 
      Proof. Relationships given by equation (15) and its inverse  
                              1

1L A A,                                               (19) 
                                                                                                                   
immediately establish the desired one-to-one correspondence 
among the ISDD-matrices A and SDD- matrices 1A .In order 
to prove the last assertion of the theorem, it is enough to left-
multiply the linear equation Ax b by the transition matrix L. 
Now since the resulting equivalent system LAx Lb  can be 
rewritten as 1  with A x g g Lb  , the expected result follows 
directly. Indeed, matrix 1A  having the strict diagonal 
dominance implies the existence of exactly one solution to the 
equation 1A x g , which also solves the original system

Ax b .                                                                        ■                                                                                                                   
 

              IV. APPLICATIONS TO HYDRAULIC MACHINES 

      Coming back to the hydraulic machine problem described 
by equations (1) – (3) consider equation (4) as a linear system 
to be solved with the aid of simple iteration methods. First, let 
us rewrite system (4) in the matrix form as 
                                           Hu ,                             (20)                                                                                                                    
where   Tu , R   , TR  with 2 2T N M  , and H is a 
large-scale (square) matrix of the block structure: 
 

       

11 12 1

21 22 2

1 2

s

s

s s ss

H H H
H H H

H

H H H

 
 
 
 
 
 




   


 .                                (21)                                                                                                            

Here, every block  1ijH , i, j , , s  , is an  i jm m  -matrix 

with 1 2 sm m m T    . Suppose further that each 
horizontal “layer”  
             1 2i i ii isH H H H ,  1 2i , , , s  ,           (22) 
                                                                                    
has the structure described in equation (8) and satisfies the 
ISDD condition (9) with the square block iiH  playing the role 
of the principal square submatrix B. It follows then from 
Theorem 1 (from [17]) that each matrix iiH , 1 2i , , , s  , is 
invertible. Hence, one can apply the following algorithm to 
solve problem of equation (20) numerically.  
     First, we fulfill a preliminary step consisting in left-
multiplying matrix H by the block- diagonal matrix 

                    

1
11

1
22

1

0 0

0 0

0 0

d

ss

H

HH .

H







 
 
 

  
 
 
 




   


                                                

In the practical implementations of the algorithm, of course, 
this step is made by the standard Gaussian elimination 
process.  
       
After having done that, system of equation (20) can be 
rewritten in the equivalent form 
                           Fu  ,                                           (24) 

                                                                                                                                 
where dH  , and the matrix dF H H has the following 
block structure 

             

1 1
1 11 12 11 1

1 1
22 21 2 22 2

1 1
1 2

s

s

ss s ss s s

I H H H H

H H I H HF .

H H H H I

 

 

 

 
 
 

  
 
 
 




   


         (25) 

Here, kI  is the  k km m unit matrix, 1 2k , , , s  . Then we 
reformulate equation (24) as 
                       u Gu                                               (26) 
                                                                                                           
with the block-structured matrix 
 

           

1 1
11 12 11 1

1 1
22 21 22 2

1 1
1 2

0

0

0

s

s

ss s ss s

H H H H

H H H HG

H H H H

 

 

 

  
 
  

  
 
   




   


, (27)                       

which allows one to apply the simple iteration (Jacobi) method 
to solve it. 
 
       The Jacobi algorithm consists in calculating the successful 
iterations as follows: 

            
   

 

1

0

0 1t tu : Gu , t , , ;

u : .





   




                          (28)          

The approximations   
0

t

t
u




converge to the (unique) solution 

u of the linear equation (20) since all the eigenvalues  
 k k G  of matrix G belong to the open interval  1 1, , 

i.e.,   1k G  . The latter inequality follows from estimates 
(14) from Theorem 1 [17] and the well-known Gershgorin 
circle theorem (cf., [14] and [15]).                                  ■                                   
 
     By the way, with all the details above, we have just proven 
the following result. 
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Theorem 4. The sequence of approximations   
0

t

t
u





generated by the simple iteration process (27) – (28) 
converges to the unique solution u of the linear system of 
equations (20) starting from an arbitrary initial 
approximation  0 Tu R .                                                        ■                                                                            
 
Remark 1. As is well-known (cf., [14] and [15]), both the 
simple iteration method and the Gauss-Seidel algorithm to 
solve linear equations boast convergence under the same 
conditions. Therefore, instead of the simple iteration algorithm 
described by equation (28), in order to solve the reduced linear 
system (26) one can apply the iteration formulas of the Gauss-
Seidel method: 

   

 

1

0

0 1t tu : Gu , t , , ;

u : .

   




 


                               (29) 

Here, the only difference between the update formulas 
(28) and (29) is in that the latter makes use of the 
partially updated previous iteration vector  tu instead of 
the unchanged vector  tu used in the former. See the 
details in [14] and [15].                                                  ■ 
 
Based upon Remark 1, one can easily establish the following 
result. 
 

Theorem 5. The sequence of approximations   
0

t

t
u





generated by the Gauss-Seidel algorithm (27) and (29) 
converges to the unique solution u of the linear system of 
equations (20) starting from an arbitrary initial 
approximation  0 Tu R .                                                        ■                                                                            

 
V. A NUMERICAL EXAMPLE 

 
The above-described algorithms solving linear equation 
system (20) were applied to compute the hydrodynamic loads 
on the blades of a hydraulic turbine regulating ring using a 
volute chamber and stator columns, by the method of discrete 
vortices [12]. The following numbers of computation points 
were used: 90 at the volute chamber, and 31 each on each 
stator column and regulating ring blade. 
 
The experiments were run on an Intel_ Core 2 Quad™ 2.66 
MHz running Windows Vista™ Home Premium, and using 
Matlab® R2008b. 
 
Computations were performed for a set of real generators, the 
number of stator columns varying from 11 to 20 and the 
number of regulating ring blades varying from 20 to 24. 

Computation accuracy 0 1ε .  was determined by the 
magnitude of the circulation 
                                     

L

Γ VdS  , 

where V is the flow velocity at each profile iL . The positions 
of the stator columns and regulating ring blades are shown in 
Fig.1.  
 
Table 1 below demonstrates the computed moment quotients 

mc  with respect to the rotation axis of the regulating ring 
blades and compares them to the experimental data concerning 
the same moment quotients mc obtained for the generator 
produced in Kharkiv, Ukraine, for “Piedra del Aguila” 
hydroelectric power plant in Neuquén, Argentina. The 
specified accuracy of ε = 10% at each of the elements was 
achieved after 12 to 20 iterations. 
 
In order to ensure condition (10) to be satisfied for matrix A of 
linear equation (8), all the matrix coefficients were computed 
after having positioned the hydrodynamic singularity  S  at 
the distance of 0 1. ΔS from the computation point, as is 
recommended by the discrete vortex method  [12]. 
 
A test verification of this discretization algorithm in the case 
of plane ideal liquid flow around a cylinder demonstrated a 
good agreement between the numerical results and the 
analytical solution, which justifies the use of the algorithm for 
practical problems. 

 
TABLE I 

RESULTS OF NUMERICAL EXPERIMENTS 
 Number of blades 

3 4 5 9 10 11 
Computed mc  0.23 0.17 0.22 0.065 0.13 0.08 

Experimental 
mc  0.25 0.17 0.24 0.070 0.11 0.08 

 
 Number of blades 
 15 16 17 20 21 22 

Computed mc  0.22 0.205 0.249 0.315 0.069 0.12 

Experimental 
mc  0.23 0.210 0.240 0.320 0.060 0.12 

 
Our experience in the use of the numerical tools for computing 
the parameters of ideal liquid flow around the regulating ring 
blades of a hydraulic turbine, as well as the satisfactory 
agreement between the numerical and experimental values of 
the turning moment 

0mc on the blade confirm the reliability of 
the above algorithms when solving systems of linear equations 
arising in engineering problems. 
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VI. CONCLUSIONS 

 
In this paper, making use of the method of discrete 
hydrodynamic singularity and a condition on the velocity 
normal component at the flow’s boundary, we reduce the 
problem of ideal liquid flow around arbitrarily positioned 
bodies to solving a system of linear algebraic equations with a 
block structure. We apply the discretization approach, which 
provides for an implicit strict diagonal dominance (ISDD) in 
the system’s matrix. We establish the one-to-one 
correspondence between the class of matrices having the 
ISDD property and the classical strict diagonal dominant 
matrices. Convergence of a block Jacobi iteration method to 
the exact solution of the thus obtained equation system is 
established. The algorithm’s efficiency is confirmed by a 
sample computing of hydrodynamic charges on the hydraulic 
turbine’s regulating ring blades (cf. [17]). 
 
Since the convergence conditions for the Gauss-Seidel 
iteration method coincide with those for the Jacobi algorithm, 
one can apply the Gauss-Seidel iterations to find the hydraulic 
machine hydrodynamic loads and the liquid velocity on the 
turbine parts as well. 
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