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ABSTRACT 

The TCP protocol has a checksum operation to verify the data integrity. This operation is performed over all bytes 
of a TCP segment, consuming several clock cycles and occupying precious processing time from embedded 
processors. This paper presents the implementation of the TCP checksum in an independent hardware module to 
reduce the processing time. This module, called the TCP Checksum Offload Engine (TCOE), integrates a 
Multiport Memory Controller (MPMC) and a Processor Local Bus (PLB) to improve the response time. The 
experimental results reported performance improvements in the TCOE-based system compared to the 
performance of the baseline implementation for segment sizes greater than or equal to 79 bytes. The clock cycles 
of the TCOE-based system also represented only 1% of the baseline clock cycles after increasing segment size 
and reaching its maximum value. 

Keywords: Hardware-software co-design, TCP protocol, checksum operation 

RESUMEN 

El protocolo TCP lleva a cabo una operación de suma de comprobación para verificar la integridad de los datos. 
Esta operación se realiza sobre todos los bytes de un segmento TCP con un consumo de varios ciclos de reloj y 
con alta demanda de tiempo de procesamiento de los procesadores embebidos. En este artículo presenta la 
implemetnación de la suma de comprobación  del TCP en un módulo de hardware independiente. Este módulo, 
llamado TCP Checksum Offload Engine (TCOE), integra un controlador de memoria multipuerto (MPMC) y un 
bus del procesador local (PLB) para reducir el tiempo de procesamiento. Los resultados experimentales reportaron 
mejoras en el rendimiento del sistema basado en TCOE en comparación con el rendimiento de la implementación 
de referencia considerando tamaños de segmento mayores que o iguales a 79 bytes. Los ciclos de reloj del sistema 
basado en TCOE también representarón solo el 1% de los ciclos de reloj de referencia después de incrementar el 
tamaño de segmento y llegar a su valor máximo.  

Palabras claves: Co-diseño de hardware y software, protocolo TCP, operación de suma de comprobación 

1. INTRODUCTION 

Embedded processors have become a common component for digital networks. These processors execute network 
specific tasks as well as data-generation and data-consumption tasks. Thus, these processors usually have to share 
their limited resources, like memory and CPU, between the network and non-network tasks. Network tasks, like 
the processing of network protocols, have become a bottleneck in computer communication as a result of the 
growth disparity found between network and computer technologies (Bhattacharya and Varsha, 2006). 
Improvements at the physical network layer have resulted in the emergence of network technologies like the 10-
Gigabit Ethernet.  
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The nominal clock rate of single core processors limits their capability to meet the performance requirements 
found in the network technologies (Faulkner and Brampton, 2009). Embedded processors, specific purpose 
architectures with fewer amounts of hardware resources, face even greater difficulties to meet these performance 
requirements.   

The most resource-demanding code sections of tasks related to network protocol processing are the operations 
performed over a large number (whole bunch) of bytes that are sent or received. These code sections implement 
data copy and checksum operations (Bhattacharya and Varsha, 2006). Data coy operations move data back and 
forth from user to kernel space. Data copy operations also exchange data between kernel space and the Network 
Interface Card (NIC.) Transport layer protocols like TCP and UDP make extensive use of checksum operations. 
The TCP/IP protocol stack is the most extensively used set of network protocols for internet connection. 
Embedded systems with internet as a part of their application environment require a TCP/IP stack to establish an 
internet connection. Thus, the design of   internet-enabled embedded systems must meet the computing demand 
imposed by the protocol stack without becoming overloaded. 

This paper focuses on the hardware/software implementation of the TCP protocol. The TCP checksum, one of the 
two resource-demanding operations, is implemented in hardware to meet the computing demands of internet-
enabled embedded systems. TCP checksum has an important place in terms of the CPU occupation required to 
process the TCP protocol (Bhattacharya and Varsha, 2006). Research efforts, described in the next section, have 
attempted to minimize the latency generated by the checksum calculation. This paper presents a new 
implementation of the hardware/software interface using two components: (1) the Multiport Memory Controller 
(MPMC) and (2) the Processor Local Bus (PLB). The MPMC enables a faster access to the data required for 
checksum calculation and the PLB communicates the checksum hardware to the embedded processor. The rest of 
the paper is organized as follows. Section 2 reviews previous work about improving TCP checksum processing. 
Section 3 describes the architecture of the TCP Checksum Offload Engine (TCOE) module. Section 4 explains the 
internals and behavior of the module. Section 5 describes the operation of the hardware/software interface. 
Section 6 presents the experimental results. The last section presents the conclusions and the future work. 

2. RELATED WORK 

Research efforts have addressed the TCP checksum calculation to improve its performance. Three important 
strategies have been identified (Wang and Wang, 2005). The first strategy, known as copy and sum, exchanges 
data between kernel space and the Network Interface Card (NIC) to perform the checksum calculation. In (Clark, 
1982), Clark proposed this strategy and reports no implementation. The second strategy, presented in (Finn and 
Hotz, 1996) describes a possible implementation of the zero copy mechanism. No copy of the data is required to 
calculate the checksum. The data sum operations, part of the checksum calculation process, are obtained during 
the data exchange between the NIC and the network. Thus, no checksum result needs to be part of the TCP 
segment to be sent; the checksum value becomes part of trailer at the data link layer protocol. This strategy 
introduces compatibility issues to communicate computers in the same network. A gateway compatible with zero 
copy mechanism has to place the checksum value in the correct field position of the TCP header before it leaves 
the network. The third strategy, presented in (Kleinpaste and Steenkiste, 1995) integrates aspects of the first and 
second strategies. It requires copying data from the host memory to the NIC calculating the checksum during a 
“send” data transfer. It also requires calculating sums during a “receive” data transfer that moves data from the 
network to the NIC. A special NIC, named communication acceleration board (CAB), is necessary for 
communication compatibility. 

The three strategies described above introduce specific requirements such as: a specific purpose processor for data 
copying, special network cards, special data link protocols, or new TCP header conventions. The solution 
proposed in this paper maintains an acceptable performance without specific requirements; the proposed solution 
works with existent hardware requiring special changes in neither the TCP conventions nor the data link 
protocols. 
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3. THE PROPOSED TCOE-BASED SYSTEM 

Figure 1 shows the hardware/software implementation of the system. The software is executed at the PowerPC 
405 processor. The specific purpose hardware is the TCP Checksum Offline Engine (TCOE); this hardware 
performs the resource-demanding checksum calculations. The Processor Local Bus (PLB) communicates the 
TCOE module with the processor. The Multiport Memory Controller (MPMC) directly connects the TCOE 
module to the data memory. TCOE to memory interfacing required one out of eight of the MPMC ports. This port 
is a Native Port Interface (NPI) type. The NPI is a Personality Interface Module (PIM) for low level direct access 
to the MPMC core (Xilinx, 2011). This low level port eases the customization of the interface between the 
MPMC and the TCOE module to meet response time needs. 

 

Figure 1: The proposed architecture 

The architecture of the proposed system contributes to satisfy the computing demands required by the internet-
enabled embedded systems. The TCOE module accesses directly the data memory to bring the large amount of 
data needed to compute the checksum operations of the TCP protocol. Thus, the PowerPC 405 processor 
consumes no computation cycles with a reduction of the overall latency to compute the checksum operations. The 
TCOE module, illustrated in Figure 1, has five internal registers accessible via PLB. The first holds the initial 
address of the data. The second register keeps the total number of bytes. The third one, a status register, holds 
input flag bits, the forth register holds output flag bits and the fifth register holds the checksum result. The TCOE 
module is also composed by five main components: the first component calculates the size and number of byte 
packets to request, the second component performs the packet requests, the third component receives the packets, 
and the fourth component adds the incoming bytes. The bytes are added as soon as these bytes are received. 
Finally, the fifth component controls the signal flush. 

4. TCOE INTERNAL STRUCTURE AND BEHAVIOR 

Before starting a checksum calculation the processor must enter the initial address and the number of bytes to sum 
into the first and second registers respectively. Any change in this two registers makes the first component to 
recalculate the number and size of the packets to ask to the MPMC. The minimum packet size is 8 bytes for a 64-
bit port. The packet length can be 8, 16, 32, 64, 128 or 256 bytes. The NPI delivers 8 bytes in a single clock cycle. 
To deliver a 128-byte packet, the NPI needs 16 clock cycles. Due to performance and complexity reasons 
(Valerio, 2012) the selected packet lengths were 8, 64, 128 or 256 bytes. This process to determine the number of 
packets and the packet length is transparent to the processor; the processor only needs the address and the number 
of bytes to do the rest. 
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After that, the processor must generate a rising edge at the less-significant-bit (lsb) of the third register to start the 
sum. This action makes the second component to clean the checksum ready flag and start asking packets to the 
NPI port. Then, the third component is prepared to receive any data coming from the NPI port. Receiving data 
means controlling the information that is passed to the fourth component (the adder) after all data has been 
received and summed, to perform the final carry adding, as it is indicated by the checksum calculation (Forouzan, 
2007), and finally to raise the checksum ready flag.  

 Some of the first bytes of the first packet and some of the last bytes of the last packet received could be discarded 
due to the need to align the packets with an address divisible by its length (e.g. a 128 bytes length packet must 
start in an address which in binary notation its first less significant seven bits are zero). The information about the 
discarded bytes is passed to the adder by the component in charge of receiving bytes. The adder has eight latches 
that filter the data coming from the NPI port, one for each byte, based on the information received. The latches 
use this information to let pass the actual data byte, or pass a null byte which contains only zeros. The adder is a 
nine input component. It receives the 8 bytes from the NPI port and a ninth feedback input. This last input comes 
from a latch connected to the adder output that holds the last result of the sum, and like the other eight inputs, this 
one has another latch connected to it to filter the incoming data. 

Data is added as it is coming from the NPI port. Carries from any single sum are accumulated, so the adder output 
is 32 bits wide to keep the cumulative carries. The component in charge of receiving data is the one performing 
the final carry adding, consisting in adding all the 16 carry bits to the first less significant 16 bits. And, this 
operation is doing twice because the first carry adding could generate an extra carry. When the double carry sum 
is complete, the component raises the checksum ready flag, which is the lsb of the fourth register. 

The fifth component controls the flush signal. By activating this signal, the component can stop the NPI port 
sending asked data, until the port is required to send data again. This is useful to eliminate the last clock cycles of 
the last packet which could contain data that was asked due to the address alignment rule but it is not intended to 
be summed. The processor has to do the following 6 steps in order to perform a checksum calculation. Step one is 
to enter the initial address in the first register. Step two is entering the number of bytes to be sum in the second 
register. Steps three and four are entering a ‘0’ followed by a ‘1’ in the lsb of the third register to generate a rising 
edge. Step five is to check if the lsb of the fourth register is ‘1’. Finally, once step five is true, step six is to read 
the result of the checksum from register fifth. If the validation in step five is not true, the processor can do any 
other relevant task and then return to validate step five again. 

 

EXPERIMENTAL RESULTS 

The experimental platform was a Xilinx’s Virtex II Pro development board that contains an FPGA Virtex II Pro 
XC2VP30. This FPGA also has a PowerPC 405 hard core embedded processor. This board includes an Ethernet 
port and contains an FPGA with enough resources to carry out the experiments needed to validate the proposed 
implementation. The Multiport Memory Controller (MPMC) and the PLB were part of the Xilinx Embedded 
Development Kit (EDK). The NPI ports can be configured either 32 or 64 bit wide. A 64-bit width was selected to 
maximize the throughput of the port. 

The functional testing of the TCOE-based system had four stages. The first stage was to exhaustively check all the 
components separately. The PowerPC 405 was the first component to test. The software-processor version of a 
test program was coded and tested at this stage to establish the baseline measurements. The test program, written 
in C language, coded a test sequence that requested to perform N-byte checksums starting at a fixed address and 
incrementing the number of bytes from 1 to the maximum value of N. The TCP protocol specifies a maximum 
value of 65535 for N. At the second state, the TCOE module was individually tested using simulation tools. At 
the third stage, the interfaces between the processor and the TCOE module, and the interface between the NPI 
port and the TCOE module were also tested. These tests included simulations of the NPI port. At the fourth stage, 
the complete TCOE-based system was uploaded into the FPGA. It was possible to obtain timing diagrams of the 
FPGA implementation of the TCOE-based system using the Chipscope tool from Xilinx. These timing diagrams 
were compared to the timing diagrams obtained by simulation to ensure functional correctness.  
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A TCOE-Module version of the test program was developed and used to test the functionality of the system. The 
results of the software-processor and the TCOE-Module versions were compared to ensure functional correctness 
again. 

Performance tests were conducted to determine the degree of accomplishment of the computing demands required 
by the internet-enabled embedded systems. Two metrics were selected for performance evaluation. The first 
performance metric is the time needed to communicate the PowerPC processor with the TCOE module through 
the PBL bus. The second performance metric is time needed to perform the checksum operation without 
considering the communication time. Table 1 shows experimental results obtained with the FPGA development 
system. The table has the cycle count that the processor takes to read or write to the five registers connected to the 
PLB. The values at the average clock-cycle count column were calculated as the mean value among 100 
measurements. The measurements were obtained from the VirtexII-pro development system using the Chipscope 
tool. 

Table 1: Clock cycles for PLB register interfacing access 

Register access transaction Average clock cycle count 

Writing on Address register 482.24 
Writing on  # Bytes register 443.39 

Writing on Input Flags register 443.93 

Reading Output Flags register 272.49 

Reading Checksum register 273.07 

 

This first metric is obtained by adding the five types of transactions (in Table 1) plus an additional input flag 
register transaction (to generate the rising edge on the lsb.) Thus, the minimum time needed for communication 
during a checksum operation is 2359 clock cycles. This number can be larger if the ready flag is not asserted on 
the first try. A reassertion of the ready flag results in an additional access to the output flag register. 

There are two instances of the second performance metric: (1) the time needed by the PowerPC processor to 
calculate checksum operation using the software-processor version of the test program and (2) the time needed by 
the TCOE module to calculate the checksum operation. Table 2 reports the results for these two instances 
obtained from the VirtexII-pro development system. The percentage column is the ratio between TCOE value 
divided by the Software-processor value. The value in the “Without PLB” column is obtained by subtracting 2359 
cycles from the TCOE value. 

Table 2 shows the different clock cycle counts required to compute the checksum operation for specific group 
sizes. The total number of clock cycles is almost the same for group sizes between 1 and 500 bytes. The TCOE 
module is faster to compute the checksum compared to the processor-TCOE communication. Group sizes 
between 500 and 1000 bytes slightly increment the clock cycle counts. An increment in the group size is 
translated in an increment in the clock cycle count for group sizes above 1000 bytes. Checksum calculation for 
group sizes below 80 bytes requires a larger clock cycle count in the TCOE module compared to the software-
processor computations. The performance of the TCOE module constantly improves for group sizes above 80.  At 
65535 bytes, maximum value imposed by TCP, the TCOE module cycles are less than 1% of the processor cycles. 

Figure 2 presents graphs of TCOE module and Software-processor versus the group size. A linear curve is useful 
to fit the data. The slope for the TCOE module and the software-processor are 0.1492 cycles/bytes and 23.986 
cycles/bytes respectively. The graph shows the faster software-processor growth compared to the other. The 
TCOE module cycles counts show a slight change and are smaller than the software-processor cycle counts. 
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Table 2: Cycle count to checksum N bytes 

N 
Bytes 

TCOE 
Module 
(cycles)  

Software- 
Processor  
(cycles)  

Percen- 
tage  

Without 
 PLB 
(cycles)  

1  2609.42  711.51  366.74%  250.37  
10  2600.75  943.24  275.73%  241.70  
20  2601.05  1178.94  220.63%  242.00  
30  2600.63  1443.56  180.15.% 241.58  
40  2600.93  1719.13  151.29%  241.88  
50  2601.41  1899.50  136.95%  242.36  
60  2600.64  2134.63  121.83%  241.59  
70  2595.91  2404.07  107.98%  236.86  
80  2594.70  2669.24  97.20%  235.65  
90  2595.15  2850.77  91.03%  236.10  
100  2594.62  3087.90  84.03%  235.57  
150  2609.56  4323.49  60.36%  250.51  
500  2599.94  12674.46  20.51%  240.89  
1000  2645.74  24728.64  10.70%  286.69  
3000  3011.93  72697.21  4.14%  652.88  
10000  4020.67  240683.31  1.67%  1661.62  
20000  5470.95  480401.90  1.139%  3111.90  
30000  6925.61  720437.56  0.96%  4566.56  
40000  8493.96  960171.36  0.89%  6134.91  
50000  10014.65 1199693.07 0.84%  7655.60  
60000  11596.51 1440187.15 0.81%  9237.46  
65535  12400.60 1572534.65 0.79%  10041.55  

 

 

Figure 2: Dispersion graph: bytes vs cycles for module and processor 

Figure 3 shows the clock cycle counts of the software-processor and the TCOE module within a group size range 
going from 1 to 100 bytes. TCOE clock cycle counts show insignificant change and are greater than the software-
processor clock cycle counts. The slope of the software-processor clock cycle counts is the same for Figure 2 and 
Figure 3.  The experimental behavior of the two clock cycle counts can be approached using two equations. The 
intersection point can be obtained by solving the equations. This intersection point is 78.53 and can be rounded to 
79. This intersection value is a threshold indicating whether the TCOE module performs better or not. Thus, a 
group size larger than 79 indicates a better performance of the TCOE module. The greater the group size, the 
better performance the TCOE module according to Figures 2 and 3.  
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Finally, an important observation to remark from Table 2 is the fact that the TCOE module could perform better 
than the software-processor even from a 1 byte checksum, as it can be seen by comparison of columns “Without 
PLB” and “Software-Processor”. The PLB communication degrades the TCOE module performance.  

 

 

Figure 3: Zoom to the first 100 bytes with same data from Figure1 

 

Table 3 summarizes the FPGA resources used by the TCOE module. The GCLK has a utilization percentage of 
18%. This utilization is the highest among the FPGA resources required by TCOE module. The FPGA still has 
room to synthesize another component 4 times larger. The size can be larger than 4 times if the utilization of 
GCLKs is lower. 

Table 3: FPGA resource utilization 

Resource Used Available Usage 
Slices 749 13696 5% 

Slice Flip-Flops 482 27392 1% 
4 input LUTs 1359 27392 4% 

IOs 379 - - 
Bonded IOBs 0 556 0% 

GCLKs 3 16 18% 

 

5. CONCLUSIONS 

This paper presents the design and implementation of a hardware module that performs TCP checksum 
operations. The TCP checksum is a resource-demanding operation. The hardware implementation has the purpose 
of satisfying the computing demands of internet-enabled embedded systems. This module is known as “TCP 
Checksum Offload Engine” (TCOE). The TCOE module is interfaced to an embedded processor using the 
Processor Local Bus (PLB) and to a data memory using the Xilinx’s Multiport Memory Controller (MPMC).  
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To calculate a checksum operation, the TCOE module receives the initial address, the number of bytes and the 
start signal.  The TCOE module stores the checksum result in a register accessible by the PLB. The TCOE module 
uses a Native Interface Port (NPI) of the Multiport Memory Controller (MPMC) to bring the data to be summed 
directly from the data memory. Performance tests demonstrated that the TCOE-based system calculated the 
checksum operation faster than the software-processor based system. The TCOE-based system required less 
number of clock cycles for group sizes larger or equal to 79 bytes. The TCOE-based system has the potential to 
offer faster checksum calculations for any group size, if the communication latency between the TCOE module 
and the processor is significantly reduced or eliminated. Thus, the most efficient TCOE-based system can be 
established either by calculating checksums with TCOE module for N values larger than 79 clock cycles, or by 
calculating the checksums using the processor for N values smaller than 79 clock cycles. 

Important future work is an exhaustive performance evaluation of the TCOE-based system under an experimental 
computer networking environment. Other important goal is the identification and implementation of highly 
efficient communication mechanism between the TCOE module and the processor. A communication mechanism 
that interfaces the TCOE module to the memory bus is a promising option. 
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