

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
1

Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2013)
”Innovation in Engineering, Technology and Education for Competitiveness and Prosperity” August 14 - 16, 2013 Cancun, Mexico.

Design and implementation of a TCP checksum offload engine
based on the multiport memory controller and the processor

local bus

Christian Valerio-Regalado
Tecnológico de Monterrey, Monterrey, Nuevo León, México, cvalerio@itesm.mx

Alfonso Avila-Ortega
Tecnológico de Monterrey, Monterrey, Nuevo León, México, aavila@itesm.mx

ABSTRACT

The TCP protocol has a checksum operation to verify the data integrity. This operation is performed over all bytes
of a TCP segment, consuming several clock cycles and occupying precious processing time from embedded
processors. This paper presents the implementation of the TCP checksum in an independent hardware module to
reduce the processing time. This module, called the TCP Checksum Offload Engine (TCOE), integrates a
Multiport Memory Controller (MPMC) and a Processor Local Bus (PLB) to improve the response time. The
experimental results reported performance improvements in the TCOE-based system compared to the
performance of the baseline implementation for segment sizes greater than or equal to 79 bytes. The clock cycles
of the TCOE-based system also represented only 1% of the baseline clock cycles after increasing segment size
and reaching its maximum value.

Keywords: Hardware-software co-design, TCP protocol, checksum operation

RESUMEN

El protocolo TCP lleva a cabo una operación de suma de comprobación para verificar la integridad de los datos.
Esta operación se realiza sobre todos los bytes de un segmento TCP con un consumo de varios ciclos de reloj y
con alta demanda de tiempo de procesamiento de los procesadores embebidos. En este artículo presenta la
implemetnación de la suma de comprobación del TCP en un módulo de hardware independiente. Este módulo,
llamado TCP Checksum Offload Engine (TCOE), integra un controlador de memoria multipuerto (MPMC) y un
bus del procesador local (PLB) para reducir el tiempo de procesamiento. Los resultados experimentales reportaron
mejoras en el rendimiento del sistema basado en TCOE en comparación con el rendimiento de la implementación
de referencia considerando tamaños de segmento mayores que o iguales a 79 bytes. Los ciclos de reloj del sistema
basado en TCOE también representarón solo el 1% de los ciclos de reloj de referencia después de incrementar el
tamaño de segmento y llegar a su valor máximo.

Palabras claves: Co-diseño de hardware y software, protocolo TCP, operación de suma de comprobación

1. INTRODUCTION

Embedded processors have become a common component for digital networks. These processors execute network
specific tasks as well as data-generation and data-consumption tasks. Thus, these processors usually have to share
their limited resources, like memory and CPU, between the network and non-network tasks. Network tasks, like
the processing of network protocols, have become a bottleneck in computer communication as a result of the
growth disparity found between network and computer technologies (Bhattacharya and Varsha, 2006).
Improvements at the physical network layer have resulted in the emergence of network technologies like the 10-
Gigabit Ethernet.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
2

The nominal clock rate of single core processors limits their capability to meet the performance requirements
found in the network technologies (Faulkner and Brampton, 2009). Embedded processors, specific purpose
architectures with fewer amounts of hardware resources, face even greater difficulties to meet these performance
requirements.

The most resource-demanding code sections of tasks related to network protocol processing are the operations
performed over a large number (whole bunch) of bytes that are sent or received. These code sections implement
data copy and checksum operations (Bhattacharya and Varsha, 2006). Data coy operations move data back and
forth from user to kernel space. Data copy operations also exchange data between kernel space and the Network
Interface Card (NIC.) Transport layer protocols like TCP and UDP make extensive use of checksum operations.
The TCP/IP protocol stack is the most extensively used set of network protocols for internet connection.
Embedded systems with internet as a part of their application environment require a TCP/IP stack to establish an
internet connection. Thus, the design of internet-enabled embedded systems must meet the computing demand
imposed by the protocol stack without becoming overloaded.

This paper focuses on the hardware/software implementation of the TCP protocol. The TCP checksum, one of the
two resource-demanding operations, is implemented in hardware to meet the computing demands of internet-
enabled embedded systems. TCP checksum has an important place in terms of the CPU occupation required to
process the TCP protocol (Bhattacharya and Varsha, 2006). Research efforts, described in the next section, have
attempted to minimize the latency generated by the checksum calculation. This paper presents a new
implementation of the hardware/software interface using two components: (1) the Multiport Memory Controller
(MPMC) and (2) the Processor Local Bus (PLB). The MPMC enables a faster access to the data required for
checksum calculation and the PLB communicates the checksum hardware to the embedded processor. The rest of
the paper is organized as follows. Section 2 reviews previous work about improving TCP checksum processing.
Section 3 describes the architecture of the TCP Checksum Offload Engine (TCOE) module. Section 4 explains the
internals and behavior of the module. Section 5 describes the operation of the hardware/software interface.
Section 6 presents the experimental results. The last section presents the conclusions and the future work.

2. RELATED WORK

Research efforts have addressed the TCP checksum calculation to improve its performance. Three important
strategies have been identified (Wang and Wang, 2005). The first strategy, known as copy and sum, exchanges
data between kernel space and the Network Interface Card (NIC) to perform the checksum calculation. In (Clark,
1982), Clark proposed this strategy and reports no implementation. The second strategy, presented in (Finn and
Hotz, 1996) describes a possible implementation of the zero copy mechanism. No copy of the data is required to
calculate the checksum. The data sum operations, part of the checksum calculation process, are obtained during
the data exchange between the NIC and the network. Thus, no checksum result needs to be part of the TCP
segment to be sent; the checksum value becomes part of trailer at the data link layer protocol. This strategy
introduces compatibility issues to communicate computers in the same network. A gateway compatible with zero
copy mechanism has to place the checksum value in the correct field position of the TCP header before it leaves
the network. The third strategy, presented in (Kleinpaste and Steenkiste, 1995) integrates aspects of the first and
second strategies. It requires copying data from the host memory to the NIC calculating the checksum during a
“send” data transfer. It also requires calculating sums during a “receive” data transfer that moves data from the
network to the NIC. A special NIC, named communication acceleration board (CAB), is necessary for
communication compatibility.

The three strategies described above introduce specific requirements such as: a specific purpose processor for data
copying, special network cards, special data link protocols, or new TCP header conventions. The solution
proposed in this paper maintains an acceptable performance without specific requirements; the proposed solution
works with existent hardware requiring special changes in neither the TCP conventions nor the data link
protocols.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
3

3. THE PROPOSED TCOE-BASED SYSTEM

Figure 1 shows the hardware/software implementation of the system. The software is executed at the PowerPC
405 processor. The specific purpose hardware is the TCP Checksum Offline Engine (TCOE); this hardware
performs the resource-demanding checksum calculations. The Processor Local Bus (PLB) communicates the
TCOE module with the processor. The Multiport Memory Controller (MPMC) directly connects the TCOE
module to the data memory. TCOE to memory interfacing required one out of eight of the MPMC ports. This port
is a Native Port Interface (NPI) type. The NPI is a Personality Interface Module (PIM) for low level direct access
to the MPMC core (Xilinx, 2011). This low level port eases the customization of the interface between the
MPMC and the TCOE module to meet response time needs.

Figure 1: The proposed architecture

The architecture of the proposed system contributes to satisfy the computing demands required by the internet-
enabled embedded systems. The TCOE module accesses directly the data memory to bring the large amount of
data needed to compute the checksum operations of the TCP protocol. Thus, the PowerPC 405 processor
consumes no computation cycles with a reduction of the overall latency to compute the checksum operations. The
TCOE module, illustrated in Figure 1, has five internal registers accessible via PLB. The first holds the initial
address of the data. The second register keeps the total number of bytes. The third one, a status register, holds
input flag bits, the forth register holds output flag bits and the fifth register holds the checksum result. The TCOE
module is also composed by five main components: the first component calculates the size and number of byte
packets to request, the second component performs the packet requests, the third component receives the packets,
and the fourth component adds the incoming bytes. The bytes are added as soon as these bytes are received.
Finally, the fifth component controls the signal flush.

4. TCOE INTERNAL STRUCTURE AND BEHAVIOR

Before starting a checksum calculation the processor must enter the initial address and the number of bytes to sum
into the first and second registers respectively. Any change in this two registers makes the first component to
recalculate the number and size of the packets to ask to the MPMC. The minimum packet size is 8 bytes for a 64-
bit port. The packet length can be 8, 16, 32, 64, 128 or 256 bytes. The NPI delivers 8 bytes in a single clock cycle.
To deliver a 128-byte packet, the NPI needs 16 clock cycles. Due to performance and complexity reasons
(Valerio, 2012) the selected packet lengths were 8, 64, 128 or 256 bytes. This process to determine the number of
packets and the packet length is transparent to the processor; the processor only needs the address and the number
of bytes to do the rest.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
4

After that, the processor must generate a rising edge at the less-significant-bit (lsb) of the third register to start the
sum. This action makes the second component to clean the checksum ready flag and start asking packets to the
NPI port. Then, the third component is prepared to receive any data coming from the NPI port. Receiving data
means controlling the information that is passed to the fourth component (the adder) after all data has been
received and summed, to perform the final carry adding, as it is indicated by the checksum calculation (Forouzan,
2007), and finally to raise the checksum ready flag.

 Some of the first bytes of the first packet and some of the last bytes of the last packet received could be discarded
due to the need to align the packets with an address divisible by its length (e.g. a 128 bytes length packet must
start in an address which in binary notation its first less significant seven bits are zero). The information about the
discarded bytes is passed to the adder by the component in charge of receiving bytes. The adder has eight latches
that filter the data coming from the NPI port, one for each byte, based on the information received. The latches
use this information to let pass the actual data byte, or pass a null byte which contains only zeros. The adder is a
nine input component. It receives the 8 bytes from the NPI port and a ninth feedback input. This last input comes
from a latch connected to the adder output that holds the last result of the sum, and like the other eight inputs, this
one has another latch connected to it to filter the incoming data.

Data is added as it is coming from the NPI port. Carries from any single sum are accumulated, so the adder output
is 32 bits wide to keep the cumulative carries. The component in charge of receiving data is the one performing
the final carry adding, consisting in adding all the 16 carry bits to the first less significant 16 bits. And, this
operation is doing twice because the first carry adding could generate an extra carry. When the double carry sum
is complete, the component raises the checksum ready flag, which is the lsb of the fourth register.

The fifth component controls the flush signal. By activating this signal, the component can stop the NPI port
sending asked data, until the port is required to send data again. This is useful to eliminate the last clock cycles of
the last packet which could contain data that was asked due to the address alignment rule but it is not intended to
be summed. The processor has to do the following 6 steps in order to perform a checksum calculation. Step one is
to enter the initial address in the first register. Step two is entering the number of bytes to be sum in the second
register. Steps three and four are entering a ‘0’ followed by a ‘1’ in the lsb of the third register to generate a rising
edge. Step five is to check if the lsb of the fourth register is ‘1’. Finally, once step five is true, step six is to read
the result of the checksum from register fifth. If the validation in step five is not true, the processor can do any
other relevant task and then return to validate step five again.

EXPERIMENTAL RESULTS

The experimental platform was a Xilinx’s Virtex II Pro development board that contains an FPGA Virtex II Pro
XC2VP30. This FPGA also has a PowerPC 405 hard core embedded processor. This board includes an Ethernet
port and contains an FPGA with enough resources to carry out the experiments needed to validate the proposed
implementation. The Multiport Memory Controller (MPMC) and the PLB were part of the Xilinx Embedded
Development Kit (EDK). The NPI ports can be configured either 32 or 64 bit wide. A 64-bit width was selected to
maximize the throughput of the port.

The functional testing of the TCOE-based system had four stages. The first stage was to exhaustively check all the
components separately. The PowerPC 405 was the first component to test. The software-processor version of a
test program was coded and tested at this stage to establish the baseline measurements. The test program, written
in C language, coded a test sequence that requested to perform N-byte checksums starting at a fixed address and
incrementing the number of bytes from 1 to the maximum value of N. The TCP protocol specifies a maximum
value of 65535 for N. At the second state, the TCOE module was individually tested using simulation tools. At
the third stage, the interfaces between the processor and the TCOE module, and the interface between the NPI
port and the TCOE module were also tested. These tests included simulations of the NPI port. At the fourth stage,
the complete TCOE-based system was uploaded into the FPGA. It was possible to obtain timing diagrams of the
FPGA implementation of the TCOE-based system using the Chipscope tool from Xilinx. These timing diagrams
were compared to the timing diagrams obtained by simulation to ensure functional correctness.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
5

A TCOE-Module version of the test program was developed and used to test the functionality of the system. The
results of the software-processor and the TCOE-Module versions were compared to ensure functional correctness
again.

Performance tests were conducted to determine the degree of accomplishment of the computing demands required
by the internet-enabled embedded systems. Two metrics were selected for performance evaluation. The first
performance metric is the time needed to communicate the PowerPC processor with the TCOE module through
the PBL bus. The second performance metric is time needed to perform the checksum operation without
considering the communication time. Table 1 shows experimental results obtained with the FPGA development
system. The table has the cycle count that the processor takes to read or write to the five registers connected to the
PLB. The values at the average clock-cycle count column were calculated as the mean value among 100
measurements. The measurements were obtained from the VirtexII-pro development system using the Chipscope
tool.

Table 1: Clock cycles for PLB register interfacing access

Register access transaction Average clock cycle count

Writing on Address register 482.24
Writing on # Bytes register 443.39

Writing on Input Flags register 443.93

Reading Output Flags register 272.49

Reading Checksum register 273.07

This first metric is obtained by adding the five types of transactions (in Table 1) plus an additional input flag
register transaction (to generate the rising edge on the lsb.) Thus, the minimum time needed for communication
during a checksum operation is 2359 clock cycles. This number can be larger if the ready flag is not asserted on
the first try. A reassertion of the ready flag results in an additional access to the output flag register.

There are two instances of the second performance metric: (1) the time needed by the PowerPC processor to
calculate checksum operation using the software-processor version of the test program and (2) the time needed by
the TCOE module to calculate the checksum operation. Table 2 reports the results for these two instances
obtained from the VirtexII-pro development system. The percentage column is the ratio between TCOE value
divided by the Software-processor value. The value in the “Without PLB” column is obtained by subtracting 2359
cycles from the TCOE value.

Table 2 shows the different clock cycle counts required to compute the checksum operation for specific group
sizes. The total number of clock cycles is almost the same for group sizes between 1 and 500 bytes. The TCOE
module is faster to compute the checksum compared to the processor-TCOE communication. Group sizes
between 500 and 1000 bytes slightly increment the clock cycle counts. An increment in the group size is
translated in an increment in the clock cycle count for group sizes above 1000 bytes. Checksum calculation for
group sizes below 80 bytes requires a larger clock cycle count in the TCOE module compared to the software-
processor computations. The performance of the TCOE module constantly improves for group sizes above 80. At
65535 bytes, maximum value imposed by TCP, the TCOE module cycles are less than 1% of the processor cycles.

Figure 2 presents graphs of TCOE module and Software-processor versus the group size. A linear curve is useful
to fit the data. The slope for the TCOE module and the software-processor are 0.1492 cycles/bytes and 23.986
cycles/bytes respectively. The graph shows the faster software-processor growth compared to the other. The
TCOE module cycles counts show a slight change and are smaller than the software-processor cycle counts.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
6

Table 2: Cycle count to checksum N bytes

N
Bytes

TCOE
Module
(cycles)

Software-
Processor
(cycles)

Percen-
tage

Without
 PLB
(cycles)

1 2609.42 711.51 366.74% 250.37
10 2600.75 943.24 275.73% 241.70
20 2601.05 1178.94 220.63% 242.00
30 2600.63 1443.56 180.15.% 241.58
40 2600.93 1719.13 151.29% 241.88
50 2601.41 1899.50 136.95% 242.36
60 2600.64 2134.63 121.83% 241.59
70 2595.91 2404.07 107.98% 236.86
80 2594.70 2669.24 97.20% 235.65
90 2595.15 2850.77 91.03% 236.10
100 2594.62 3087.90 84.03% 235.57
150 2609.56 4323.49 60.36% 250.51
500 2599.94 12674.46 20.51% 240.89
1000 2645.74 24728.64 10.70% 286.69
3000 3011.93 72697.21 4.14% 652.88
10000 4020.67 240683.31 1.67% 1661.62
20000 5470.95 480401.90 1.139% 3111.90
30000 6925.61 720437.56 0.96% 4566.56
40000 8493.96 960171.36 0.89% 6134.91
50000 10014.65 1199693.07 0.84% 7655.60
60000 11596.51 1440187.15 0.81% 9237.46
65535 12400.60 1572534.65 0.79% 10041.55

Figure 2: Dispersion graph: bytes vs cycles for module and processor

Figure 3 shows the clock cycle counts of the software-processor and the TCOE module within a group size range
going from 1 to 100 bytes. TCOE clock cycle counts show insignificant change and are greater than the software-
processor clock cycle counts. The slope of the software-processor clock cycle counts is the same for Figure 2 and
Figure 3. The experimental behavior of the two clock cycle counts can be approached using two equations. The
intersection point can be obtained by solving the equations. This intersection point is 78.53 and can be rounded to
79. This intersection value is a threshold indicating whether the TCOE module performs better or not. Thus, a
group size larger than 79 indicates a better performance of the TCOE module. The greater the group size, the
better performance the TCOE module according to Figures 2 and 3.

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
7

Finally, an important observation to remark from Table 2 is the fact that the TCOE module could perform better
than the software-processor even from a 1 byte checksum, as it can be seen by comparison of columns “Without
PLB” and “Software-Processor”. The PLB communication degrades the TCOE module performance.

Figure 3: Zoom to the first 100 bytes with same data from Figure1

Table 3 summarizes the FPGA resources used by the TCOE module. The GCLK has a utilization percentage of
18%. This utilization is the highest among the FPGA resources required by TCOE module. The FPGA still has
room to synthesize another component 4 times larger. The size can be larger than 4 times if the utilization of
GCLKs is lower.

Table 3: FPGA resource utilization

Resource Used Available Usage
Slices 749 13696 5%

Slice Flip-Flops 482 27392 1%
4 input LUTs 1359 27392 4%

IOs 379 - -
Bonded IOBs 0 556 0%

GCLKs 3 16 18%

5. CONCLUSIONS

This paper presents the design and implementation of a hardware module that performs TCP checksum
operations. The TCP checksum is a resource-demanding operation. The hardware implementation has the purpose
of satisfying the computing demands of internet-enabled embedded systems. This module is known as “TCP
Checksum Offload Engine” (TCOE). The TCOE module is interfaced to an embedded processor using the
Processor Local Bus (PLB) and to a data memory using the Xilinx’s Multiport Memory Controller (MPMC).

11th Latin American and Caribbean Conference for Engineering and Technology

Cancun, Mexico August 14-16, 2013
8

To calculate a checksum operation, the TCOE module receives the initial address, the number of bytes and the
start signal. The TCOE module stores the checksum result in a register accessible by the PLB. The TCOE module
uses a Native Interface Port (NPI) of the Multiport Memory Controller (MPMC) to bring the data to be summed
directly from the data memory. Performance tests demonstrated that the TCOE-based system calculated the
checksum operation faster than the software-processor based system. The TCOE-based system required less
number of clock cycles for group sizes larger or equal to 79 bytes. The TCOE-based system has the potential to
offer faster checksum calculations for any group size, if the communication latency between the TCOE module
and the processor is significantly reduced or eliminated. Thus, the most efficient TCOE-based system can be
established either by calculating checksums with TCOE module for N values larger than 79 clock cycles, or by
calculating the checksums using the processor for N values smaller than 79 clock cycles.

Important future work is an exhaustive performance evaluation of the TCOE-based system under an experimental
computer networking environment. Other important goal is the identification and implementation of highly
efficient communication mechanism between the TCOE module and the processor. A communication mechanism
that interfaces the TCOE module to the memory bus is a promising option.

REFERENCES

Bhattacharya, S.P., and Varsha, Apte. (2006). “A Measurement Study of the Linux TCP/IP Stack Performance
and Scalability on SMP systems”. First International Conference on Communication System Software and
Middleware, pp 1-10.

Clark, D.D. (1982). “Modularity and Efficiency in Protocol Implementation”. RFC 817, pp 1-10.
Faulkner, M., and Brampton, S. (2009). “Evaluating the Performance of Network Protocol Processing on Multi-

core Systems”. Advanced Information Networking and Applications, pp 16-23, 26-29.
Finn, G., and Hotz, R.V. (1996). “The Impact of Zero-Scan Internet Checksumming Mechanism”. ACM

SIGCOMM Computer Communication Review, Vol. 26, No. 5, pp 27-39.
Forouzan, B.A.(2007). TCP/IP Protocol Suite, 3rd edition, Mcgraw-Hill International, New York.
Kleinpaste, K., and Steenkiste, P. (1995). “Software Support for Outboard Buffering and Checksumming”. ACM

SIGCOMM Computer Communication Review, Vol. 25, No. 4, pp 87-98.
Valerio, C. I. (2012). “Diseño, desarrollo e implementación de un motor de descarga de la suma de verificación

del protocol de control de transmission (TCP) para sistemas embebidos que hacen uso del controlador de
memoria multipuerto (MPC) y el bus local de procesador (PLB)”, M.S. Thesis, Tecnológico de Monterrey,
Nuevo León, México.

Wang, W.F., and Wang, J.J. (2005). “Study of Enhanced Strategies for TCP/IP Offload Engines”. 11th
Internacional Conference on Parallel and Distributed Systems, pp 398-404.

Xilinx Corporation. (2011). Multiport Memory Controller (MPMC), http://www.xilinx.com/support/ , 01/11/11.

Authorization and Disclaimer

Authors authorize LACCEI to publish the paper in the conference proceedings. Neither LACCEI nor the editors
are responsible either for the content or for the implications of what is expressed in the paper.

