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ABSTRACT 
 

An NP problem is a class of problem whose solution can be found if possible in non-polynomial time with a 

non-deterministic algorithm. The Boolean Satisfiability Problem (SAT) is a well known NP-complete 

decision problem that consists in deciding whether the variables of a propositional logic formula can be 

given a value that satisfies the formula. This research will focus on digital testing by using this problem to 

find the growth faults within a programmable logic array (PLA) by analyzing its Boolean equation in 

conjunction normal form (CNF). The first stage of this project will be the development of a SAT solver 

which will incorporate genetic algorithms. Several tests are performed with different values for each 

parameter of the genetic algorithm to determine the best way to optimize the process of finding all the 

possible values that satisfy a PLA Boolean equation. Also, from the SAT library, several benchmarks will be 

used to determine which parameters optimize the process of finding a solution to the problem. These tests 

will be evaluated by how many solutions are found and the amount of time it takes to find a solution to the 

problem within a convergence and generation limit.  
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1. INTRODUCTION 
 

Since the approximation to the new millennium, technology started to become the focus of many people who 

wanted to create something innovative before someone else did. During those years, new technologies were 

developed that now allow us to perform more complex computations that took too long to do because of the 

processing power at the time. One such complex computations method that has been a focus of research in 

recent years is evolutionary computation. Evolutionary computation uses theories from people like Charles 

Darwin to create algorithms that modify its function and information the way biological life forms evolve 

and adapt to their needs in order to survive. Some of these algorithms are called Evolutionary Programming, 

Genetic Programming, Evolutionary Strategies, and Genetic Algorithm (Tomassini 1995). This paper is an 

overview on how genetic algorithm works with binary encoding by solving the Boolean Satisfiability 

Problem with an equation in CNF. This is the first stage of this project, were the different parameters of 

genetic algorithms will be tested to identify which parameters best optimizes the process of finding the 

combination of values that satisfy the equation being tested. 

 
2. THE BOOLEAN SATISFIABILITY PROBLEM 
 

The Boolean Satisfiability Problem, also known as SAT, is a well known NP-complete decision problem 

that consists in deciding whether the variables of a propositional logic formula can be given a value that 

satisfies the formula. This formula can be represented in CNF, which is a conjunction of x clauses that 

contains a disjunction of y literals. A literal is the same as a variable in a Boolean equation, where its value 
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can be either 0 or 1. A clause is a group of literals joined together by one of two propositional operators 

(Marques-Silva 2008). A conjunction use the AND operator (∧/*) where only if both operands are 1 does it 

return a TRUE (1). A disjunction uses the OR operator (∨/+) where if either of the operands is a 1 does it 

return a TRUE. There is a third propositional operator known as the NOT (￢/’) which is combined with a 

literal to give us the complement of a literal. For example, if A is 0; its complement (A’) would be 1. This 

problem has been widely used in many applications like model-checking of finite-state systems, design 

debugging, AI planning, software testing, identification of functional dependencies in Boolean functions, etc 

(Marques-Silva 2008). It has also been used as an exemplary problem for testing genetic algorithms because 

of the large search space that it can provide depending on the equation in question. This search space come 

from all of the possible solutions that can be found which come from the equation of two to the power of the 

number of literals in the equation. The following equation, F(a,b,c,d,e,f) = (￢a∨c)∧ 

(￢a∨c∨￢e)∧(￢b∨c∨d∨￢e)∧ (a∨￢b∨c)∧(￢e∨f) will be use as an example to show the 

different techniques performed by a genetic algorithm (Luger and Stubblefield 1997). This equation contains 

a total of 64 combinations of values, 2
6
, which are the combination of 0’s and 1’s in all its literals, but only 

30 of these combinations satisfy the equation, returns a 1 also known as TRUE. 

 
3. GENETIC ALGORITHMS 
 

Genetic algorithm is a search algorithm, created by John Holland in 1975, which mimics the evolution 

theories created by Charles Darwin (Whitley 1994). Darwin’s theory of evolution states that all life is related 

and come from a common ancestor. As time passes, individuals from each generation begin to mutate and 

become something different from their ancestors. Another part of Darwin’s theory of evolution is the natural 

selection which states that the best genetic parts of an individual survive to aid in the survival of the race. 

These theories come true when the aspect of time is looked at through the different generations that appear 

over time. In genetic algorithm, these theories are implemented as operations or stages. There are a total of 

six stages in genetic algorithm: Population Generation, Fitness Calculation, Parent Selection, Mating, 

Mutation and Integration. The integration phase is where the offspring’s created during the Mating Phase, 

also known as the Crossover Phase; join the new population in the next generation. After the offspring’s 

have filled the population in the next generation, the algorithm takes the new population and continues from 

phase 2, Fitness Calculation, of the algorithm until either a convergence occurs or a solution to the problem 

is found. Before running the genetic algorithm, there are several parameters that must be chosen to 

determine the operation of the different phases of the algorithm. The most important parameters are: 

population size, crossover and mutation rate, convergence limit, and the selection, crossover and mutation 

technique to be used. Figure 1 is an example of how genetic algorithms evolve the information contained 

within an individual inside a population to find a solution to its problem. 

 

 
 

Figure 1: Genetic Algorithm Sample 
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3.1 Population and Fitness Calculation 
 

Each population has an amount of individuals which contain an amount of genes, fitness and a rank. Gene is 

a term used as a part of the information contained within an individual. Another term used in genetic 

algorithms is chromosome which represents the individual. There are several types of encoding that the 

information within each individual is based on. In binary encoding, the genes of each individual are a string 

of bits. In permutation encoding, the genes of each individual are a string of numbers in a sequence. In value 

encoding, the genes of each individual are a string of values that could be specific to a problem. In tree 

encoding, the genes of each individual are a tree of objects like functions or commands (Obitko 1998). In 

order to solve the Boolean Satisfiability Problem, binary encoding is used since the literals of a Boolean 

equation, which also represent the genes of an individual, can only be a 0’s and 1’s. The fitness of an 

individual is used to measure how close the information contained within an individual is to the solution of 

the problem. The rank of the individual is used to classify the fitness of the individual in the population. 
 

To start the algorithm, a set of individuals with their genes is generated randomly. After the first population 

is generated, the fitness of each individual is calculated by solving each clause in the Boolean equation. 

Since the equation will be in CNF; if one of the genes in the individual satisfies a part of the clause, the 

individual fitness increases. This process is repeated with all the clauses of the equation with each individual 

in the population. If the information contained in the individual satisfies all the clauses of the equation, a 

solution to the problem has been found. For this type of problem, it is better to have a higher fitness than a 

lower one, because it means that the individual has solved more clauses and is closer to finding a 

combination of values that satisfy the equation. A higher fitness gives an individual a much better 

probability of being selected as a parent of an individual in the next generation; but because in other types of 

problems it is better to have a lower fitness, a rank is needed to consider the class of fitness that each 

individual has in the population. A higher rank gives an individual a much better probability of being 

selected as a parent. Table 1 shows an example of a population with each individual’s fitness, rank, and their 

probability of being selected as parents with different techniques. Also, the individuals 1, 3, 6 and 8 are a 

solution to the problem by having a fitness of 5 because their information contains a combination of values 

that satisfy the previous equation stated before. In this population, there are only three different fitness (5, 4, 

and 3); meaning that their will be only three different ranks in this population. Individuals with fitness 5 

have a rank of 3, while those with fitness 4 have a rank of 2 and the one with fitness 3 has a rank of 1. 

 
Table 1: Example of a Population 

 

ID Genes Fitness Rank Probability of Selection 

(Roulette/Rank/Elite) 

1 000001 5 3 14.3% / 15.8% / 100% 

2 000100 4 2 11.4% / 10.5% / 0% 

3 011001 5 3 14.3% / 15.8% / 100% 

4 111010 4 2 11.4% / 10.5% / 0% 

5 000111 4 2 11.4% / 10.5% / 0% 

6 110011 5 3 14.3% / 15.8% / 100% 

7 101011 3 1 8.6% / 5.3% / 0% 

8 001011 5 3 14.3% / 15.8% / 100% 

 
3.2 Selection 
 

Each individual in a population has a position in their society. Normally the individuals that fit a profile 

would be in a very high position while others in a lower position. As already stated, in genetic algorithms, 

the position of an individual is determined by their fitness and rank which gives them their probability to 

become parents of the next generation. Each individual can be selected to be a parent of more than one 

individual. 
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3.2.1 Roulette Wheel Selection 
 

The roulette wheel selection technique is a fitness proportionate technique where the fitness of all 

individuals in the population is added. To determine the probability of selection that each individual has, the 

fitness of each individual is divided by the total fitness of the population. To select the individual, a random 

number is generated from 0 to the fitness of the population. Then each individual is considered by giving 

them a range determined by their fitness. This range starts from the previous individual’s range limit and 

ends with the current individual fitness plus the previous individual’s range limit. As an example using the 

individuals in Table 1, the range of the first individual would extend from 0 to 5, while the range of the 

second individual would extend from 5 to 9, and so on. If the generated random number is 7; then the 

selected individual to become a parent of the next generation will be the second individual. Figure 2 is an 

example of the probability that each individual has of being selected using this technique with the 

individuals from Table 1. 

 

 
 

Figure 2: Probability of Selection of Every Individual in Table 1 using Roulette Wheel Selection 

 
3.2.2 Rank Selection 
 

The rank selection uses the same process as the roulette wheel selection. The only difference is that it 

considers the rank and not the fitness. Figure 3 is an example of the probability that each individual has of 

being selected using this technique with the individuals of Table 1. 

 

 
 

Figure 3: Probability of Selection from Each Individual in Table 1 Using Rank Selection 

 
3.3 Mating: Cloning or Crossover 
 

For a race to survive and prosper, the genes of the fittest individuals must continue on to the next generation. 

This is done by mating and creating offsprings that will carry the genes of the current generation to the next. 

To bring this belief in genetic algorithms, the information from the previous selected individuals is used to 

produce two new individuals, known as offspring’s through different techniques called cloning and 

crossover. Cloning creates two offspring’s with the exact information as their parents while crossover 

combines the information. To determine how the offspring will be created, a random number is generated 

and compared with the crossover rate. If the number is higher than the crossover rate, the cloning technique 

is used; if not one of the following crossover techniques is used. Each technique will be explained assuming 

that the selected parents are individuals 3 and 6 from Table 1. 
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3.3.1 Single-Point Crossover 
 

A random number needs to be generated to determine the point where the information of each parent is 

divided between the offspring’s. Figure 4 shows how the random number divides the information between 

each parent in two parts to create the offspring’s. Each offspring will have the first part of one parent, while 

the second part is interchanged between them. 

 

 
 

Figure 4: Single-Point Crossover Example 

 
3.3.2 Two-Point Crossover 
 

Two random numbers need to be generated if this technique is used, to determine the point where the 

information of each parent is divided between the offsprings. Figure 5 shows how the random numbers 

divide the information between each parent in three parts to create the offspring’s. The first and last part of 

each parent goes to one offspring, while the middle part is exchanged between them. 

 

 
 

Figure 5: Two-Point Crossover Example 

 
3.3.3 Uniform Crossover 
 

An equal amount of random numbers to the amount of genes of each individual are generated to determine 

which information will be exchanged between the parents in order to create the offsprings. Figure 6 contains 

a random template of the genes that show which genes are exchanged between the parents. The position in 

the template where there is a 1, mean that the genes of the parents are exchanged.  

 

 
 

Figure 6: Uniform Crossover Example 
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3.4 Mutation 
 

As the algorithm gets closer to finding one or more solutions, the information contained within many of the 

individuals become almost identical possibly causing a convergence in the algorithm. The convergence of 

the algorithm is considered when the average fitness of the population, population fitness divided by the 

amount of individuals, is repeated through an amount of generations. Sometimes depending on the equation 

or the problem, no solution is found because of this. A solution to this problem is the Mutation Phase. 

Through each generation in every race, a small mutation takes place. This keeps the individuals of each 

generation different from the others. The same theory is applied in genetic algorithms. After the Mating 

Phase, a mutation is considered for each offspring. This is done by generating a random number in which if 

the number generated is equal or less than the mutation rate, the following mutation technique is performed.  

 
3.4.1 Bit Inversion 
 

Since the information contained within each individual in this type of encoding is a collection of 1’s and 0’s, 

all that has to be done is invert the bit of a specific set of genes. Each gene will have a 50% chance of 

actually being mutated. Figure 7 contains a random template which indicates which genes will be mutated. 

The position in the template where there is a 1, mean that the gene value will be inverted. 

 

 
 

Figure 7: Bit Inversion Example 

 
3.4.2 Forced Bit Mutation 
 

Even with the bit inversion, there could still be a problem with the convergence of the algorithm since many 

applications that use genetic algorithm choose to have a very low mutation rate, like 1% or 0.1%. Because of 

this, many offspring may not go through a mutation phase causing the algorithm to converge really fast. For 

this reason, a solution for this type of encoding is to do a force mutation using bit inversion every n genes 

that has been passed on to the next generation regardless of the mutation rate. This is a special type of 

mutation which will occur to any gene of any offspring that will be integrated into the next population. This 

type of mutation could work very well for those algorithms that use a very low mutation rate and whose 

algorithm converges really fast without having found a solution; since a change in a specific bit could 

change the entire fitness of the individual, also changing the average fitness in the population. 

 

 
 

Figure 8: Force Bit Mutation Example 
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4. EXPERIMENT 
 

The parameters of the genetic algorithm that are being tested are the population size, the crossover and 

mutation rates, and the selection and crossover techniques. The experiment will run with a generation limit 

of 50,000 generations and a convergence limit of 100. To avoid a fast convergence, the force bit mutation 

will be forced in each test every 1000 bits that is pass to a new generation. This technique may increase as it 

may decrease the chance of finding combination of values that satisfy the equation depending on the amount 

of literals of the equation and the population size. At the same time, it will avoid a fast convergence which 

will help during the testing of a PLA equation which contains many combinations of values that satisfy the 

equation. To identify which parameters best optimizes the process of finding a combination of values that 

satisfy the problem, two types of testing are performed.  
 

The first type of testing will be with a PLA equation where all the combinations of values that satisfy the 

equation will be searched. The amount of combinations of values that satisfy the equation that are found and 

the amount of time it takes to find the last combination will be considered when choosing the best choice of 

parameters. For this type of testing, a PLA equations with 12 literals and 20 clauses will be used (Cruz 

2002). 
 

The second type of testing will be with benchmarks taken from the SAT library to test the algorithm as a 

SAT solver and which parameters of the genetic algorithm best optimizes the process of finding a 

combination of values that satisfy the equation. The amount of time and the amount of generations will be 

considered when choosing the best choice of parameters. For this type of testing, three benchmarks 

containing 20 literals and 91 clauses will be used. 

 
5. PRELIMINARY RESULTS 
 

After performing the testing with a population of 16 individuals, several conclusions can be gathered of the 

differences that some parameters of the genetic algorithm offer. The following parameters can be compared 

with the current gathered data. 

 

5.1 Roulette Wheel Selection vs. Rank Selection 
 

Rank selection offers an advantage over roulette wheel selection as it takes each fitness and ranks their value 

to give those individuals with a higher fitness a higher chance of being selected as parents. This is taken into 

consideration at later generations when the fitness of each individual is very similar. As an example, Figure 

9 shows the difference of using Roulette Wheel Selection and Rank Selection with a population of eight 

individuals with the following fitness: 50, 51, 52, 53, 54, 55, 56, and 57. As it can be seen, the probability of 

an individual being selected using roulette wheel selection is almost the same for all individuals in the 

population; while using Rank Selection there is a higher chance to select the best individuals of the 

population to be parents of the next generation.  

 

 
 

Figure 9: Difference between Roulette Wheel and Rank Selection using an advanced Boolean 

Equation 
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Even though rank selection offers an advantage over roulette wheel selection; for the PLA equation, the 

roulette wheel selection is much better than the rank selection. It can be seen in Figure 10, assuming that the 

total amount of combinations of values that satisfy the equation is 1257; most of the simulations running 

with the roulette wheel selection find all the combinations of values and the last combination is found much 

faster than those using rank selection. This is because roulette wheel selection considers all individuals in the 

population equally depending on the fitness. This is what is being searched for when looking for all the 

combinations of values that satisfy the PLA equation. But for the SAT benchmark testing, where only one 

combination of values that satisfy the equation is searched, rank selection is better since it offers the best 

individuals as parents for the next generation. As it can be seen in Figure 11, the time it takes to find a 

combination of values that satisfy the equation is much faster using the roulette wheel selection. 

 
5.2 Single Point Crossover vs. Two-Point Crossover vs. Uniform Crossover 
 

As it can be analyzed in Figure 10, by comparing the times the last combination of values was found in each 

simulation, the uniform crossover gives a much better performance than the other two techniques because 

the uniform crossover has the possibility of making many more combination of values than the other two 

techniques, making a lot of difference in the later generations of the simulation. However, for the SAT 

benchmarks, as it can be seen in Figure 11, more testing needs to be done before considering which 

crossover technique might be better because most of the results of the simulations are very similar for all 

techniques. 

 
5.3 80% vs. 100% Crossover Rate 
 

The main difference between having an 80% and a 100% crossover rate is that with 80% there is a small 

chance that the offspring have the same data as the selected parents. As it can be seen in Figure 10, it doesn’t 

affect much since the time it takes to finish the test and the time it takes to find the last combination of 

values that satisfy the equation is very close. However, for the SAT benchmark, it is better to have 100% 

crossover rate since it gives the new individuals of the new generation a new set of values that differentiate 

from the previous generation. This may bring the algorithm closer to a combination of values that satisfy the 

equation. This is seen in Figure 11 as many of the satisfied simulations have a 100% crossover rate. 

 
5.4 10% vs. 1% vs. 0.1% Mutation Rate 
 

Utilizing the results of the simulation, it can be clearly seen that for both types of testing using a mutation 

rate of 0.1% gives neither all nor most of the combinations of values that satisfy the PLA equation and 

converges too fast using a benchmark from the SAT library. However, between a mutation rate of 10% and 

1%, it is better to have 10% for both types of testing since the mutation takes the offspring after the 

crossover and gives them new values that each parent didn’t have. This is a risk because a value may be 

changed; decreasing the fitness of the individual or it may increase it to the point of having the combination 

of values that satisfy the equation. As it can be seen in Figure 10 and 11, the best times of either finding the 

last combination of values that satisfy the PLA equation or the combination of values that satisfy the SAT 

benchmark are in the simulations with a 10% mutation rate. 
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Figure 10: PLA Simulation Table 

 

 

Figure 11: SAT Simulation Table 

 
6. CONCLUSION AND FUTURE WORK 
 

For now, preliminary results lead me to believe that using the following parameters of the genetic algorithm 

with a PLA equation give me a better chance of finding most, if not all, the combinations of values that 
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satisfy the equation: roulette wheel selection, uniform crossover, either 80% or 100% crossover rate, and 

10% mutation rate. Also, with the SAT library benchmarks, preliminary results lead me to believe that using 

the following parameters of the genetic algorithm give me a better chance of finding a combination of values 

that satisfy the equation: rank selection, 100% crossover rate, and 10% mutation rate. There is still more 

testing being done with the different population sizes and other techniques for each of the operators of the 

genetic algorithm. More results are being gathered as time passes, and a better idea of which parameters best 

optimize the performance of the algorithm can be determined in the future. 
 

The future of this project will include the implementation of analyzing the combinations of values that where 

found that satisfy the equation to find the growth and shrinkage faults in the equation assuming it came from 

a PLA. More selection, crossover, and mutation techniques will be added and tested to see if the new 

techniques improve the performance of finding one or more combination of values that satisfy the equation. 

The solver will be compared with other algorithms, specifically those that where submitted in the SAT Race, 

to compare the techniques used in each algorithm. 
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