Ninth LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2011)
Innovation and Development for the Americas, Aug 3-5, 2011, Medellin, Colombia

PACKED PERMUTATIONS AND INVERSIONS: PROPERTIES AND APPLICATIONS.
Fabio Guerinoni

Mathematics and Computer Science Department
Bemidji State University

ABSTRACT

In this paper, we present a bit-based method to store permutations. From the standard representation, we introduce
order matrices which relates the well-known inversion tables and provides the packed representation. Some basic
algorithms are presented to manipulate these objects. We briefly mention some applications that may advantageously
use the global information that they disclose.

Keywords: permutation, cycles, inversions, shuffles, parallel procesing.
1. INTRODUCTION

Consider a set of values, ranking certain data which is distributed among a number of computers (processors). The
data and their ranking was produced over some period of time and assigned to the computers sequentially. If some
processor wants to know if it holds data that is larger in value than anything that came previously, it seems that it
will need to communicate with the other processors. It seems that the problem is inherently sequential.

This is not the case if the permutation is represented as an inversion table, as we will see later. Inversion tables were
discovered, apparently relatively late, by Marshall Hall Jr. in 1956 (Knuth, 1998), although the concept of inversion
of a permutation, has been in the literature for longer in connection with the theory of determinants.

We are all familiar with a permutation 7, belonging to the symmetric group of order n, §,, a one-to-one mapping of
the set {1,2,...,n — 1,n} into itself, often denoted

(12..n—1n)

b1 P2 ...-Pn—1Pn

where (i) = p;. Once we have this convention, we may simply write 7 as p(7) = (p1 P2 ...Pn—1 Pn): the
argument of the mapping is given implicitly by position. This one-line notation is often used (Knuth 1998),
but there is no reason why we can’t describe 7 in any other way, say by writing the complement: p¢(w) =
(n+1-—n(1),...,n+1—m(n—1),n+1—m(n)). Although it is important to distiguish the permutation, from
its representation, in this article, at times, we blur this difference by writing (i) = p; = m;.

One advantage of alternative representations is that they may convey non-local information and thus may be useful in
many applications and algorithms. In practical, as well as in theoretical computer science, the issue of representation is
of paramount importance. However, this non-locality makes algorithms for complex problems simple, and algorithms
for simple problem complex.

One such representation are the inversion tables. In Section 2, we review their basic properties, and we introduce
notation for further sections. Section 3 is the main section and it introduces the concept of packed permutation,
and after giving some framework, we derive some simple properties, including its basic relations with the inversions
tables.

Section 4 describes two algorithms to construct packed representations and to operate with them. The algorithms
have a rich structure that can be subject to analysis, but this is not explored here. Finally, Section 5 outlines some
ideas for applications to certain types of permutations and to distributed processing.

2. INVERSION TABLES

Consider a set of values, ranking certain data which is distributed among a number of computers (processors). The
data and their ranking was produced over some period of time and assigned to the computers sequentially.

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WEI1-1 Aug 3-5, 2011

As we stated before, inversions tables have been known for for long, We will introduce them here. First, we define
some notation.

It is common to study a permutation 7w by its effect on any order set of n elements. We allow a permutation to take
as ‘argument’ a n-vector (totally ordered set) and produce another n-vector arranged according to the permutation.
Thus if s = (s1 82 ...Sn—1 Sn), then

8" = (Sx—(1)s Sr—(2) - S7—(n=1)s S1—(n))

and we say that 7 has acted on s. Alternatively, the effect of a permutation on an ordered set can be interpreted as
vector-matriz product. In what follows, we use the superscript ¢, as in U?, to denote vector or matrix transpositon.

Definition 1.1. The matrix IT = [e;(1), €x(2) - - - €r(n)| With
el =1(0,...1,...0,0)

where the single 1 occurs at position i. is called the permutation matrix of 7. Clearly if an n-vector s in column
form is multiplied on the right by II, the resulting row vector is the same as s™.

The inverse of m will be denoted more simply by 7, rather than using the cumbersome —1 exponent; the one line
representation for 7~ will be denoted p~.

Using # to denote the cardinality of a set, the number of inversions in a permutation is defined

inv(m) = #{ (i,5) / i < j,p; < pi}.

In other words, using the standard representation p, we are counting the number of pairs when p; occurs left of p;
and p; is also greater than p;. We are using the standard representation to denote the permutation 7; we follow the
same practice throughout the paper for notational convenience.

The two inversion representations for m, q(7), g(m) arise from counting inversions in orderly ways:

TS #{j/j<i» Pi<P3} (1)

q; #{j/j<piai<pj} (2)

Either one defines an inversion table, but Hall in his original paper, used (2).
Using simple constructive arguments, it can be shown that q define 7, and also q as we will see in short.
For example, we take the permutation 7 whose standard respresentation is

p(t)=(173284695)
that is 7(1) = 1,7(2) = 7,7(3) = 3.... Then

q(r)=(001202204) q(r)=(021242000)

Proposition 2.1. If q and q are the two inversion tables corresponding to m, (1), (2). Then,
Q" =q

Proof: This follows directly from the definition, but it is illustrative to revert to the two-line notation. If g¢; = r there
are indices j; < jo < ... < jr < i with p; <pj,, V&1 <k <r. The two line notation for 7 is

(Y TR MU SUDUE SO))
i Djreer Dy oo Djr-e-Di--Pn

from where we can clearly see that g, = r. Thus g,, = ¢;. And since p; = 7(i), §; = Gz (5)-

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-2 Aug 3-5, 2011

Proposition 2.2. For each of the inversion representations, q,q, the following bounds are observed:

0<g<i—1 0<qg <n-—p; (3)
0<q <n—1 Oﬁﬁiﬁpffl (4)

Proof: The first line is immediate by the definition. The second line is obtained by substituting 7~ (¢) for 7 and using
Proposition (1.1). g

For each inversion table, the first bounds are absolute, while the second type of bound depends on the permutation 7
represented. In general, the first bound gives q, an “increasing” appearance, and q a “decreasing” one. So sometimes
we will refer to the two inversions as the up vector and the down vector of .

By taking any of the two range inequalities in the first column in 3 and 4, it is not hard to see that there are
exactly n! inversion tables that will satisfy them. Also, the § may be used to naturally map the symmetric group
to {0,1,...,n! — 1} using a ‘factorial base.” This fact is often used for enumeration and the generation of random
permutations.

Definition 2.1. For w € S,. w(i) is a left to right mazimum, (LR-max) if 7(¢) is the largest value among the
m(k),1 <k <i. The LR-max occurs at i. Similar definitions can be given for LR-min, for the right to left versions,
RL-max, RL-min.

Notice that we have a zero value in q wherever a LR-max occurs in m. Wherever q is zero, tells the value of a
LR-max. Other similar properties can be derived; some are summarized here.

Proposition 2.3.
(a) 7 has a LR-max (min) ati < ¢; =0 (¢ =i—1).
(b) iis a LR-max (RL-max) <q=0(g=n—1)

Proof: For part (a), it is almost by definition: if ¢; = 0 there are no larger p; left of p;, so it must be a record
maximum. ¢; =4 — 1, the p; are all larger, so it must be a record minimum. Part (b): by Proposition 1 if g; = 0 if
and only if g, ;) = 0, this means that for all indices j < 7~ (i) we have p,- ;) =i > pj, that is, i is a LR-max. For
the second part, a less formal argument will be used. If g, = n — i, all the values larger than ¢ occur left of ¢ in p.
This can only happen, if 7 is larger than anything to the right. All the arguments are reversible. g

The following show the relation of the inversions tables of 7 with its inverse.

Proposition 2.4.
(a) pg is an LR-maximun for 7 < 7~ has a RL-minimum at % .
(b) 7 has a RL-min (max) at i < g, =0 (g, =n — 7).

Proof: Similar to for Proposition (2.3). g

3. A PACKED REPRESENTATION OF A PERMUTATION

Consider a set of values, ranking certain data which is distributed among a number of computers (processors). The
data and their ranking was produced over some period of time and assigned to the computers sequentially.
To show the relations between the two inversions we introduce the concept: the order matriz. It is defined to be

Bij(m) = [(i) < =(5)]

where we use [q(i,7)] is characteristic function of the predicate q. Note that we have made the order matrix
independent of the representation but the standard definition could have been used in the representation.

In what follows, the standard representation and the inversion tables will be assumed to be a column n-vector. We
will use the 1 to the n-vector column composed of 1. It is easy to see the 1 1! is the matrix composed just of 1.
We will call I’, the permutation matrix representing reversion, that is with ones on the secondary diagonal and zero
elsewhere. n will the column n-vector consisting of 1,2,...n. In other words, n = p(id)

The simplest property which can be directly deduced from the definition is

P+ Pt =11 -1,

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WEI1-3 Aug 3-5, 2011

tells us that the order matrix represents a tournament, with the additional property of being transitive. The no-ties
outcome of the tournament defines the permutation.

If we fix a row 7 and sum over j, we account for the elements larger than p;; similarly, fixing a column j and summing
over ¢, we must get exactly p; — 1. Thus,

Pl = nl-—p
17p = pT—-17

Thus the columm sum of P “complement” minus 1, as defined in the introduction, and the row sum gives us the
original representation p minus 1.
We decompose P as a sum of a stricly lower triangular and a strictly upper triangular matrix.

P(m) = L(m) + U(n)

The symmetric matrices, L+ LT and U+UT are very well known in the literature, as being the adjacency matrices of
permutation graphs. (Golumbic,1980) . Permutation graphs are of interest in theoretical computer science, because
often they admit tractable versions of algorithms which are normally intractable. The classic characterization of such
graphs is given in (Even et al,1972): they can be labeled so that the adjacency matrices of both the graph (L) and
its complement (U) are transitive.

Definition 3.1. The packed representation of the permutation 7 is given by the n(n + 1)/2 bits represented by
L(m). This include n redundant 0-bits from the diagonal which are kept for convenience of description.
For example the permutation p = (5,3, 1,6, 2,4) has the following packed representation:

B R OR RO
O Fr OFr o
o o oo
=}

By construction, a permutation can only have one packed representation.
The following result is important and shows our proposed representation as the link showing the duality between the
two types of inversions.

Proposition 3.1. Given 7w € S,

Proof: The relation between L and q is straightforward. We have

4= [pi <p

7<i

For part (b), we transpose both sides and look at the j element

(1'L); = [<p)]

J<i

if there is any non-zero terms, we have

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-4 Aug 3-5, 2011

where p; < p;. Upon inverting, we get
...... Pi ---Pj---Pn
...... T... j...n.
Thus, there will be a corresponding contribution to q(7 7). g

Definition 3.2. We call U,,, the up-space of order n, the set of vectors u = (u;, ... uy) satisfying 0 < u; < i — 1.
An element d of D,,, the down-space, is defined in a similar way but satisfying 0 < d; < n — 1.

Proposition (2.2) shows that for any =, q(7) € U,, and q(7) € D,,. Conversely, to each element of U,, (D,,) we can
associate a unique permutation in S,,. For that reason, we will often use g and qP to denote, respectively, q and g
Proposition (3.1) also shows a natural relation, via the packed representation, between elements in the up-space and
the down-space, that merit its own definition.

Definition 3.3. u € U, and d € D,, are said to be dual of each other if 37 € S, with u = q“(7) and d = qP (7).
In each case 7 is the underlying permutation. We write, u* =d and d* = u.

Proposition (2.2) gives the range of q and §. Then we can naturally define complements (componentwise to the their
maximum of their range), similar to the definition of p© in Section 1. For example,

q(m) +q°(m) = L1+U"1 (5)
= n-—1 (6)

Definition 3.4. Given q in U,, or D,, we define the following operators whenever they are valid:

(i) =g+ 1om] TTal) =l q -1 g
and we call them elementary increment(decrements). The operators are not defined if the resulting value is not in
the respective space.

Definition 3.5. We define

glb,;(p) = max. (pjip <pi) lubi(p) = @igi (pr; P > pi)

Proposition 3.2. Let 7 be such that q“(7) = q. The permutation 7 corresponding to **q(i) is obtained by
exchanging element m; with the element glb(m;). We will call this a minimum inversion increase exchange at i.
Proof: : to see this , let j be the index corresponding to the glb(m;), that is j = arg glb(m;). After the exchange,
T, = mj,Tj = T, all other entries of 7 remaining the same. Calling q' = q“(7). Clearly, ¢} = ¢; + 1. Also the only
indices that could have been possible affected are k, with j < k < 7. The ¢; cannot change. For index j, any element
larger than m; will still be larger than ;. For k # j, g, cannot increase, as a larger element is brought to the left. If
assume that g increases, that would mean m; > m, but 7; < m, contradicting the choice of j. g

In a similar way, the following can be proved.
Proposition 3.3. : The permutation corresponding to ~~q(j) is obtained by exchanging element a position with
element lub(;), where the choice is made among the elements of 7 with index less than i.

If g = q(7). Proposition (3.2) shows how to compute 7’ such that it corresponds to T+q(4):

p’ = (pi glb,(p)) P

where the parenthesis represents cycle notation for transpositions. The non-local nature of the elementary increment
is quantifyied. The next proposition is a similar result for the down vectory.

Proposition 3.4. Consider a down-vectord = (i dg ...dp—1 d,) with dual d* = c = (¢1 ¢2 ...ch—1 ¢,) Assume
0<i<n—1. Call,

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WEI1-5 Aug 3-5, 2011

dy =t d(1)=(i+1dy ...dp_1 dy)

Then,
d*+ = {C1 Co . "CTr*(i-i-Q) + 1... Cn}
Proof: Notice that since ¢ < n— 1, i+ 1 and ¢ + 2 are defined in the context where they are used. Call 7 the

underlying permutation for d,. We will show that ¥ (7) = d’ . Let 7 be the underlying permutation for d. 7~ has
1 at position ¢ + 1. Thus, 7 is obtained from 7~ by transposing 1 with the element immediately to its right:

- < 12 ... i i+l i+2 L. n)
T = _ _ _ _
L eee eee T Mo 1 e,
Inverting we get,
T= 1 Mit2 "
1+ 2 1+ 1 T
If we compare with 7
S ‘1 ﬂ;& ...n ,
t+1 ... t+2 ...my,

we see that 7 is obtained from 7 by a minimum inversion increase exchange at ;. By Proposition (3.3), d} must
have the form stated.

4. SOME COMPUTATIONAL ASPECTS

Consider a set of values, ranking certain data which is distributed among a number of computers (processors). The
data and their ranking was produced over some period of time and assigned to the computers sequentially.

In the previous sections, we saw explicit form for some elementary operations on permutation and its effects on that
inversion tables. Corresponding effects on the packed permutations are more difficult to describe symbolically, and
we use instead algorithms.

The proposed representation of a permutation 7 uses the lower triangular part of P(m) which contains all the
information in P in view of the antisymmetry (). We must have means to quickly operate on these so as to verify
the homomorphism between S,,and U, (or D,,). We might try a matrix product:

P(x7) = P(7) P(7) (7)
where the right hand product is defined in the natural way: calling C = PQ

Cij=Pi1Q1;+Pi2Qaj+ ...+ P nQn; (8)

We need at least a ring structure in {0, 1}, to play the roles of the additive group and associative operators. Unfor-
tunately there is not much choice. The only candidates for the additive group operators are given in the following
table, with their respective identity element. There is only such four rings, all involving the logic operations:

® = VvV A
0O 1 0 1

(we use @ for exclusive-or). Unfortunately, as one can easily verify for the transposition (2 1) in Sy
Proposition 4.1. No product of the form (8) exists that satifies (7), regardless of the choice of operators.
On the other hand, the order matrices, and thus the packed permutations, behave well under conjugation. Con-

jugation in a permutation can be understood as a relabeling; the basic structure is preserved. Similarly, matrix
conjugation with a permutation matrix also reflects a relabeling. This observation results in

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WEI1-6 Aug 3-5, 2011

Proposition 4.2. For 7 € §,,, call T the permutation matrix corresponding to 7. Then,
P(r~wr) =T'P(n)T

The rest of the section will illustrate two types of algorithms, one ‘external’; which are derived from constructions
inl;,j=1,2,...n (or D;); and the other ‘internal,” with fixed up or down space. The latter are more elaborated,
and involves some form of inner product.

The following concepts are useful, in the construction and description of the external algorithms.

Definition 4.1. Let 7 € S,with down vector d € D,, d = (d; d2 ...dn—1 dn) and up vector u € U,,
u= (u ug ... uUp—1 Up). We associate a sequence §; € S,—;+1, 1 <1i <n to 7 called the descending sequence

a”(6;) = (dn—i+1,dn—it2-..,dz,d1) € Dp_it1
and another sequence v; € S; called the ascending sequence
qM(Uj) = (ul, UL e ey Uj—1, Uj) S Uj

Note that v,, = §; = 7.

Algorithm 1 computes v; and L(v;) from u € U,,. We denote the entries of the packed representation L(r) as I} ; with
the tacit assumption that k£ > [. We also use C-like assignments and relational operators. The blocks are implied by
the indentation.

ALGORITHM 1:

Inputueld,,i<n
Output : v; = (¢1,¢2...¢;) L(v;)
for (1 <r<i)
Cr =T —Ur; lip=0
for (1 <j<i)
if (¢; > ¢,) then
+4ci; Li=1

return;

Proposition 4.3. Algorithm 1 computes p(7)and L(7) on input g“(7) and n.

Proof: (Sketch) The key observation is that the last entry in q(7), g, is the complement of p,, n — p,. Now, this
number also counts the values among ¢; ...c,—1 greater than it . By the induction process, these values represent
Prn—1 and thus have range 1,2,...n — 1. The last iteration increases by one the required values, of which there are
exactly g, of them. The row n of L is marked accordingly. g

A similar algorithm can be defined to form the down sequence for q” and the simultaneous computation of L. This
algorithm is similar to the one outlined in (Knuth, 1998) to recover permutations from inversions, with the advantage
that ours does not required a linked list for insertions. As in Algorithm 1, the permutation corresponding to qP is
recovered in standard form.

Now we consider the problem analogous to Proposition (3.2), but which modifies the packed representation. That
is, given q¥ (') =T+ q(m)i we want L(n’), granted that we know L(). For given i, n and L, Algorithm 2 computes
the desired packed representation.

For convenience in describing the algorithm, we introduce the negative implication product for boolean vectors V, W

VAW = Y ViAW, (9)
> WAV (10)

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-7 Aug 3-5, 2011

The sum is taken in the normal arithmetic sense. Thus, there is contribution if v; = 1 and w; = 0.
Assuming ¢ is the input, the vectors C; of length n — ¢ are used to simplify the description of the algorithm and
correspond to the partial column-vectors in L:

C] = (li_l,_l,j, li+2,j, cee lan)

ALGORITHM 2:
Input L(r), i
Output: Packed permutation corresponding to t+q(7)(7)

min=n—1; ix=0;
for (1 <r<i)
if (1;» == 0) then
m = C; £ C,
if (m < min) then
min =m;
if (ix == 0) then
return;
liiz =1

T =7;

for (i +1<k<mn)
if (lix,k ==0 A lim,i == 1) then
ligg =05 ligk =1;
return;

Due to the natural bounds on the up vector *+q(i) might not be defined. This causes the algorithm to return quietly
without any changes to L.

5. SOME APPLICATIONS

Consider a set of values, ranking certain data which is distributed among a number of computers (processors). The
data and their ranking was produced over some period of time and assigned to the computers sequentially.

Here we mention two potential application of some of the concepts in this paper. Certainly there are many more.
We outline only the main ideas, the practicality of them and the performance in actual applications remain to be
explored further.

Shuffle permutations. We need some preliminary definitions.

Definition 4.2. A rising sequence in the permutation is a set of consecutive numbers (¢ g+1 ... ¢+1—2 g+1—1)
such that
(@<t (g+1)<...<7 (g+1-2)<7m (g+1—-1)

and furthermore satisfying 7= (¢ — 1) > 7 (¢) and 7~ (¢ +1—1) > 7 (¢ +).

The last conditions assure that a rising sequence is mazimal, that is they cannot be strictly contained in another
rising sequence.

A particular type of permutation is that one that contains exactly two rising sequences. Such permutations are called
shuffles by analogy of cutting and mixing a deck of cards. Shuffles are very well study, because of their application
in cryptography, and the design of sorting networks and computer memories.

For simplicity we assume that to represent a number k, we need lg k bits Using p(mw),

R(m) = ilgi (11)

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-8 Aug 3-5, 2011

bits of information for each of them.

Proposition 5.1. For a shuffle o € S,,, we have
qP(7) = (w1 we ... wx 00 ...00)

with w <=ws...<=w, =k — 1.

Thus shuffles can be stored in smaller arrays. The advantages of representing it as an inversion is immediately
apparent. Thus, each w; will require no more than lg(k — 1) bits, under our assumption. And we can easily bound
the number of bits required:

k—1
R(o) =3 lgwi < (k= 1)lg(k—1)

Let Rqvg the number of bits required for the average shuffle. Under one common model (Bayer and Diaconis, 1992),
in which the ‘cut’ (represented by k) is made uniformly random, the average shuffle will have k = n/2, thus

Ravg < g Inn/2
For large n, an asymptotic expression can be used for (11) :
In2
In2R(r) =nlnn —n+ V21 — - +0(1/n)
Then,
R(m)/Rary > R(m)/(5 lnn/2)
2
> — =~ 2.88541
Z o 885

Thus, using the qP representation for shuffles is takes three times less space, on average. While this is not surprising
because shuffles convey less information, (the information-theoretical ratio is O(lnn)), it suggests using inversion
tables or packed representations.

Distributed Processing. This, I hope, will answer the question posed in the Introduction. Considering an application,
like for example in very large data bases, where the (real-time) data ”wagers” is arriving sequentially to processors
(or resources) 0...M — 1. Each resource may store up to n items and keeps a subarray of global ranking indices p;.
This array is distributed (due to hypothetical space limitations), that is, processor r stores ppri1 ... P(r41)n-

A query is received by all processors simultaneously. Any query involving a given global rank, (for example: Which
wager was the maximum? minimun?, fifth largest?) is resolved by locally searching the n array of data, and each
processor /resource may work independently. But now consider other global questions like: Which wagers surpassed
all previous ones? Or the previous 1007 The above discussion on the properties of inversions/packed representations,
in particular Propositions 2.3 and 2.4, should make clear that that information may be recovered from data local to
the processor alone.

6. AUTHORIZATION AND DISCLAIMER

Authors authorize LACCEI to publish the papers in the conference proceedings. Neither LACCEI nor the editors
are responsible either for the content or the implications of what is expressed in the paper.

7. REFERENCES

Bayer,D. and Diaconis,P.,1992 “Trailing the dovetail shuffle to its lair”. Annals of Appl. Prob.”, 2 (2):294-313
Even, S., Lempel,A. and Pnueli,A., 1972 “Permutation graphs and Transitive graphs.” J. ACM, 19:400-410,
Golumbic, M., 1980 “Algorithmic Graph Theory and Perfect Graphs.” Academic Press

Knuth, D., 1998. Sorting and Searching, “The Art of Computer Programming.” Vol 3, AddissonWesley, 3rd ed.

9th Latin American and Caribbean Conference for Engineering and Technology
Medellin, Colombia WE1-9 Aug 3-5, 2011

