
Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET’2006) 
“Breaking Frontiers and Barriers in Engineering: Education, Research and Practice” 
21-23 June 2006, Mayagüez, Puerto Rico.  
 
 
 

Design Progression With VHDL Helps Accelerate The Digital System Designs 
 

Jaime Marcelo Montenegro, Eng. Ph.D. Candidate 
VLSI Lab Manager, Florida International University, Miami, Florida, USA, montenegro@ieee.org 

 
Dr. Subbarao Wunnava, Ph.D., P.E. 

Professor of Electrical & Computer Engineering, Florida International University, Miami, Florida, USA, 
subbarao@fiu.edu 

 
 
 
 
Abstract 
Integrated Circuit technology (IC) is the enabling technology for a whole host of innovative devices and 
systems that have changed the way we live. Integrated Circuits are much smaller and consume less power 
than the discrete components used to build electronic systems before the 1960s. Integrated circuits are 
also easier to design and manufacture and are more reliable than discrete systems. The growing 
sophistication of applications continually pushes the design and manufacturing of integrated circuits and 
electronic systems to new levels of complexity. Due to major advances in the development of electronics 
and miniaturization, vendors are capable of building and designing products with increasingly greater 
functionality, higher performance, lower cost, lower power consumption, and smaller dimensions [1]. 
However, the bottleneck for some vendors appears to be the ability of designers to target the necessary 
increase in the complexity of electronic devices. Furthermore, the electronics industry requires systems to 
be capable of in-site reprogramming, where the upgrading task depends more on software than on 
hardware. This situation has fostered the need for widespread adoption of modern technologies in design 
and testing. Of the several existing methodologies, high-density Programmable Logic Devices (PLDs) as 
well as the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) are 
key elements in the evolution of electronic devices. The authors have studied the field of programmable 
logic and deployed its capabilities. It was demonstrated how the utilization of VHDL benefits not only 
engineering applications, but also plays an important role accelerating the design of digital systems. 
 
 
Keywords 
Very-large-scale integration, VHDL, Verilog. 
 
 
1. Introduction 
 
Higher density Programmable Logic Devices, including Complex PLDs (CPLDs) and Field 
Programmable Gate Arrays (FPGAs), are microcontrollers that can be used to integrate large amounts of 
logic in a single IC. Semi custom and full-custom Application Specific Integrated Circuit (ASIC) devices 
are also used for integrating large amounts of digital logic, but CPLDs and FPGAs provide additional 
flexibility; they can be used with tighter schedules, for low volume products, and for first production runs 
even with high volume products [2]. Devices such as CPLDs and FPGAs were developed to follow the 
criteria that in order to upgrade or improve the performance and capabilities of an electronic system, only 
the devices themselves should be reprogrammed with new instructions and parameters to fulfill the new 



demands of that system. With that in mind, the electronics market has a major tool for the development of 
the next generation of electronic devices. By using these microcontrollers, the issue of achieving adequate 
scalability, proper upgrade, and stability of a system became a reality. However to efficiently program 
these logic devices, there was a need for powerful computer languages. A Hardware Description 
Language such as VHDL is particularly well suited for designing with programmable logic devices. 
 
This article is organized as follows: Section 2 will present a brief overview of VHDL and its capabilities. 
Section 3 will discuss the implementation of several VHDL logic modules on CPLDs, their simulations, 
and how they can be upgraded. Section 4 will present the conclusions based on the results obtained and 
further recommendations. 
 
 
2. VHDL Overview 
 
The goal of using the current generation of general-purpose computers to help design the next generation 
of special and general-purpose computers required bringing the worlds of hardware and software back 
together again [2]. The concept of the Hardware Description Language (HDL) was born from this union. 
Vendors were looking for a computer language to document electronic systems with the aim to support 
the state of the art in silicon-based technology. They wanted the design descriptions to be computer 
readable and executable. This was followed by the arrival of Very High Speed Integrated Circuits 
(VHSIC) Hardware Description Language (VHDL) [3]. 
 
VHDL is a hardware description language that can be used to model a digital system at many levels of 
abstraction, ranging from the algorithmic level to the gate level [4]. The complexity of the digital system 
being modeled could vary from that of a simple gate to a complete digital electronic system, or anything 
in between. The digital system can also be described hierarchically. Timing can also be explicitly 
modeled in the same description. 
 
The VHDL language can also be described as a combination of languages as shown in Figure 1: 

 

VHDL

LANGUAGEGENERATIONWAVEFORM

IONSSPECIFICATTIMING

LANGUAGENETLIST

LANGUAGECONCURRENT

LANGUAGESEQUENTIAL

=























∑

 

 
Figure 1: VHDL as an Integration of Languages 

 
Therefore, the language has constructs that enable the user to express the concurrent or sequential 
behavior of a digital system with or without timing [2]. It also allows the modeling of systems as an 
interconnection of components. Test waveforms can also be generated using the same constructs. All the 
above constructs may also be combined to provide a comprehensive description of the system in a single 
model. 
 
The language not only defines the syntax but also defines very clear simulation semantics for each 
language construct. Therefore, models written in this language can be verified using a VHDL simulator 
[4]. The complete language has sufficient power to capture the descriptions of the most complex chips to 
a complete electronic system. VHDL is used to describe a model for a digital hardware device. This 
model specifies the external view of the device and one or more external views. The internal view of the 
device specifies the functionality or structure, while the external view specifies the interface of the device 
through which it communicates with the other models in its environment. When writing VHDL code, it is 
necessary to emphasize that the user is designing for hardware. The descriptions in VHDL code will be 



synthesized into digital logic for a programmable logic device. The basic building blocks of VHDL 
design are the entity declaration and the architecture body [2]. The entity and architecture pairs can be 
used as complete design descriptions, or as components in a hierarchical design. 
 
An entity declaration describes the design input/output (I/O) that may include parameters used to 
customize an entity. The entity declaration is analogous to a schematic symbol, which describes a 
component’s connections to the rest of the design. The entity declaration specifies a name by which the 
entity can be referenced in a design’s architecture. A graphical schematic for a 4-bit wide 4 to 1 logic 
multiplexer is depicted in Figure 2. 
 

a[3:0] 00
x[3:0]

s(1)

s(0)

b[3:0]

c[3:0]

d[3:0]

01

10

11

MUX

 
 

Figure 2: Block diagram of MUX 
 

The multiplexer has a name (MUX), four 4-bit inputs (a, b, c, d), one 2-bit selection line (s), and one 4-bit 
output (x). The following listing describes the entity declaration in VHDL. 
 
entity MUX is port ( 
     a, b, c, d:     in std_logic_vector(3 downto 0); 
     s:                 in std_logic_vector(1 downto 0); 
     x:              out std_logic_vector(3 downto 0)); 
 
end MUX; 

 
Listing 1: A 4 to 1 Multiplexer Entity 

 
An architecture body describes the function and contents of a design entity. Every architecture body is 
associated with an entity declaration. If the entity declaration is viewed as a “black box,” for which the 
inputs and outputs are known but the details of what is inside the box are not, then the architecture body is 
the internal view of the black box [4]. VHDL allows the user to write the designs using various styles of 
architecture. An architecture can contain any combination of behavioral, structural or dataflow styles to 
define an entity’s function. These styles allow you to describe a design at different levels of abstraction, 
from using algorithms to gate level primitives. Listing 2 contains the architecture body that defines the 
behavior of multiplexer MUX. 
 
architecture  archmux  of  mux  is 
     begin 
     with  s  select 
              x  <=  a  when  “00”, 

          b  when  “01”, 
          c  when  “10”, 
          d  when  others; 

 
     end  archmux; 

 
Listing 2: Architecture of a 4 to 1 Multiplexer 



Based on the value of signal s, signal x is assigned one of four possible values (a, b, c, or d). This 
construct enables a concise description of the 4 to 1 multiplexer. Three values of s are explicitly 
enumerated (“00”, “01”, and “10”). The reserved word others is used to indicate the remaining possible 
values for s. That is, others is specified instead of “11”. 
 
 
3. VHDL Logic Modules 
 
This section will deal with the implementation of two logic devices employing VHDL. A 4 to 1 
multiplexer, and an 8-bit counter will be described and simulated. 
 
The entity declaration and architecture body described in Listings 1 and 2 respectively define the 
complete VHDL implementation of a 4 to 1 multiplexer. Listing 3 shows the entire VHDL code that 
describes the logic component. 
 
library  ieee; 
use  ieee.std_logic_1164.all; 
entity  mux  is  port  ( 
a,  b,  c,  d:    in  std_logic_vector(3  downto  0); 
s:                   in  std_logic_vector(1  downto  0); 
x:                 out  std_logic_vector(3  downto  0); 
end mux; 
architecture  archmux  of  mux  is 
begin 
with  s  select 
 x  <=  a  when  “00”, 

          b  when  “01”, 
          c  when  “10”, 
          d  when  others; 

end  archmux; 
 

Listing 3: A 4 to 1 VHDL Multiplexer 
 
Figure 3 illustrates the simulation of the multiplexer (between 200ns to 500ns); where a, b, c, and d are 
the data inputs, s is the selection line, and x is the output.  
 

 
 

Figure 3: Simulation results of Multiplexer MUX 
  



When the selection lines s(1) and s(0) become “0” (between 200ns to 250ns), the output x becomes “1”. 
The only data input that had this value was a. Therefore, by selecting “0” for both selection lines, the 
multiplexer asserted the first data input a as it was expected. One advantage of employing VHDL when 
designing a component is that the component itself can be modified and upgraded depending on the 
necessity of the system. For example, the same multiplexer description can be modified to be an 8 to 1 
multiplexer by just changing the code as shown in Listing 4. 
 
library  ieee; 
use  ieee.std_logic_1164.all; 
entity  mux8  is  port  ( 
a,  b,  c,  d:    in  std_logic_vector(3  downto  0); 
e,  f,  g,  h:    in  std_logic_vector(3  downto  0); 
s:                   in  std_logic_vector(2  downto  0); 
x:                 out  std_logic_vector(3  downto  0); 
end mux8; 
architecture  archmux8  of  mux8  is 
begin 
with  s  select 
 x  <=  a  when  “000”, 

          b  when  “001”, 
          c  when  “010”, 
          d  when  “011”, 
          e  when  “100”, 
          f  when  “101”, 
          g  when  “110”, 
          h  when  others; 

end  archmux8; 
 

Listing 4: An 8 to 1 VHDL Multiplexer 
 
Most device architectures have blocks of combinational logic connected to the inputs of flip-flops as the 
basic building blocks for a CPLD macrocell or an FPGA logic cell. Most sequential logic designs are 
sensitive to changes in a clock signal or a reset signal. VHDL activates a process only when one of these 
signals presents a transition from one logic state to the other [2]. Listing 5 depicts the VHDL high level 
behavioral description of an 8-bit counter. 
 
library ieee; 
use ieee.std_logic_1164.all; 
use work.numeric_std.all; 
entity cnt8 is port( 
 reset:  in std_logic; 

clk: in std_logic; 
outclk: buffer unsigned(7 downto 0)); 

end cnt8; 
architecture cnt8 of cnt8 is 
begin 
count: process (clk, reset) 
begin if reset = '1' then 

outclk <= (others =>'0'); 
elsif (clk'event and clk='1') then 

 outclk <= outclk + 1; 
end if;  

 end process count; 
end cnt8; 
 

Listing 5: An 8-bit Counter 



The counter cnt8 has two 1-bit inputs clk and reset; and one 8-bit output outclk, as shown in Figure 4. 
 

o utc lk  [7 :0 ]

res e t

C N T 8
c lk

 
 

Figure 4: An 8-bit Counter 
 

Figure 5 shows the simulation results obtained for the counter cnt8. The total running simulation time was 
750ns and the period of the input signal clk was 100ns.  
 

 
 

Figure 5: Simulation results of Counter cnt8 
 
The reset signal remains at “0” throughout the whole simulation except at the interval between from 
590ns to 615ns. This means that the output outclk will restart counting from “0” after 615ns. 
 
Once again the VHDL counter can be modified depending on the necessity of the system. In this case, the 
same counter cnt8 is modified to be a 4 bit counter by changing the code as shown in Listing 6. 
 
library ieee; 
use ieee.std_logic_1164.all; 
use work.numeric_std.all; 
entity cnt4 is port( 
 reset:  in std_logic; 

clk: in std_logic; 
outclk: buffer unsigned(3 downto 0)); 

end cnt4; 
architecture cnt4 of cnt4 is 
begin 
count: process (clk, reset) 
begin if reset = '1' then 

outclk <= (others =>'0'); 
elsif (clk'event and clk='1') then 

 outclk <= outclk + 1; 
end if;  

 end process count; 
end cnt4; 
 

Listing 6: A 4-bit Counter 



4. Conclusions 
 
The primary purpose of this research was to study the field of programmable logic. A Complex 
Programmable Logic Device (CPLD) was programmed by means of a Hardware Description Language. 
With the growing sophistication of applications continually pushing the design and manufacturing of 
integrated circuits, the CPLD proved to be easy to design and upgrade. The reprogramming feature of the 
CPLD was successfully tested in this study. A major requirement for today’s electronic systems is the 
upgrading capability. The electronics industry requires systems to be capable of in-site reprogramming, 
where the upgrading task depends more on software than on hardware. In order to achieve the proper 
functionality of the system, the CPLD was reprogrammed several times depending on the system’s 
specifications. In terms of time and cost, this feature saves a lot of troubleshooting time, and also reduces 
the cost of replacing electronic components every time a change is necessary. 
 
A Hardware Description Language (HDL) such as VHDL was employed to program the CPLD. The HDL 
purpose was to document the electronic system with the aim to support the microcontroller technology. 
This language not only defines the syntax for the system but also defines very clear simulations for each 
language construct. VHDL was used to describe the model for a digital hardware device. This model 
specified the external view of the device and one or more external views. The internal view of the device 
specified the functionality or structure, while the external view specified the interface of the device 
through which it communicated with the other models in its environment. 
 
 
References 
 
[1] Wolf, W. (2002). “Modern VLSI Design Systems on Chip Design”, 3rd edition, Prentice Hall, USA. 
[2] Skahill, K. (1996). “VHDL for Programmable Logic”, Addison-Wesley, USA. 
[3] Montenegro, J. (2002) “Very High Speed Integrated Circuits (VHDL) and Verilog Based 
Microcontroller Implementation With In System Reprogrammable (ISR) Hardware Modules,” M.S. 
Thesis, Florida International University, Florida, USA. 
[4] Bhasker, J. (1999) “A Verilog HDL Primer”, Second Edition, Star Galaxy Publishing, USA. 
[5] More, M., and Vidal, J. (1998) “Experiences on VHDL based methodologies on industrial ASIC 
design”, Proceedings of the International Semiconductor Conference, CAS v, IEEE, Piscataway, NJ, 
USA. Pp. 167-170. 
 
 
Authorization and Disclaimer 
 
Authors authorize LACCEI to publish the papers in the conference proceedings.  Neither LACCEI nor the 
editors are responsible either for the content or for the implications of what is expressed in the paper. 


