Fourth LACCEI International Latin American and Clalsean Conference for Engineering and TechnologyC(CET'2006)
“Breaking Frontiers and Barriers in Engineering: Hdation, Research and Practice”
21-23 June 2006, Mayagtiiez, Puerto Rico.

Design Progression With Verilog Helps Accelerate The Digital System Designs

Jaime Marcelo Montenegro, Eng. Ph.D. Candidate
VLSI Lab Manager, Florida International Universiliami, Florida, USA, montenegro@ieee.org

Dr. Subbarao Wunnava, Ph.D., P.E.
Professor of Electrical & Computer Engineering,rfdla International University, Miami, Florida, USA,
subbarao@fiu.edu

Abstract

Electronic systems now perform a wide variety @kgain daily life. Electronic systems in some cases
have replaced older mechanisms that operated mealignhydraulically, or by other means; electr@i
are usually smaller, more flexible, and easierd®. Un other cases electronic systems have creasdly

new applications. The progress of electronic systdepends mostly in the harmonization of software
and hardware. The role of software designers amdwzae designers is essentially the same: solve a
problem. Their primary job is to develop an alduritthat solves a problem and translate that algarit
into hardware. Integrated Circuit (IC) technolodipwas us to build hardware systems with many more
transistors, allowing much more computer power @oapplied to solving a problem [1]. This ability
makes possible the development of special-purppsteras that are more efficient than general-purpose
computers for the task at hand. As a computer laggua Hardware Description Language (HDL) allows
the use of many of the time saving software mettogfiles; but, as a hardware language, the HDL allows
expression of concepts that previously could nodXy@essed by manual notation. The Verilog Hardware
Description Language is a popular HDL; it has syrgamilar to C and Pascal. It is now known as
IEEE1364. The authors have studied the field ofdWare Description Languages and Verilog and
deployed its capabilities. It was demonstrated Hwwtilization of Verilog benefits not only engereng
applications, but also plays an important role kereéing the design of digital systems.

Keywords
Very-large-scale integration, Verilog, VHDL.

1. Introduction

In the first half of the 1990s the electronics isiy experienced an explosion in the demand for
electronic devices such as personal computersjl@elphones, and high-speed data communications
devices. To accomplish this, vendors created higitlygrated, complex systems with fewer Integrated
Circuit devices and less Printed Circuit Board (fP@Bea. The submicron semiconductor development,
large-scale PCB manufacturing, and surface mourtkgmang technologies supported increased
integration.

Given the existing Electronic Design Automation @&Dools and accelerated time to market schedules,
the drawback for some vendors seemed to be thigyadfilengineers to handle the increasing compjexit

of designs [2]. In most cases, the demand for fastere reliable and smaller devices required aomaj
increase in the complexity of electronic devicesrdbver, the necessity to upgrade systems withadligi
circuitry became a major issue. Most electronicicks were not upgradeable since the IC technology
embedded in their logic architectures was not mgammmable. The market required systems to be
capable of in-site reprogramming, allowing the egs to adjust and grow as its necessities chargjed [
This situation promoted the need for widespreagaoio of modern technologies in design and testing.

Designers utilizing HDLs are capable of programmilegices by writing code in a mode similar to that
of computer languages such as C and C++. Thissoffer designer the ability and flexibility to pragr
microcontrollers by writing the code in an Engligte environment, or as it is commonly known,
translate words into algorithms. Verilog HardwaresEription Language is suitable for the programming
and testing of reprogrammable devices such as @xrtogrammable Logic Devices (CPLDs) and
Field Programmable Gate Arrays (FPGAS).

This article is organized as follows: Section 2 wiksent a brief overview of Verilog and its caifiibs.
Section 3 will discuss the implementation of sev®xilog logic modules on CPLDs, their simulations
and how they can be upgraded. Section 4 will ptefenconclusions based on the results obtained and
further recommendations.

2. Verilog Overview

Verilog HDL is a hardware description language tteat be used to model a digital system at manydeve
of abstraction ranging from the algorithmic-levelthe gate-level to the switch-level. The complexit
the digital system being modeled could vary frorattbf a simple gate to a complete electronic digita
system. The digital system can be described hieiaity and timing can be explicitly modeled within
the same description [4].

The Verilog HDL language includes capabilities tescribe the behavioral nature of a design, the
dataflow nature of a design, a design’s structw@inposition, delays and a waveform generation
mechanism including aspects of response monitasimg verification, all modeled using one single
language [5]. In addition, the language providgsr@gramming language interface through which the
internals of a design can be accessed during stiiolimcluding the control of a simulation run.

The language not only defines the syntax but alsiines very clear simulation semantics for each
language construct. Therefore, models written is limguage can be verified using a Verilog sinarlat
The language inherits many of its operator symhbaot$ constructs from the C programming language.

The basic building units of description in Verilage themodule, declarationandstatementsA Module
describes the functionality or structure of a desand also describes the ports through which it
communicates externally with other modules. Thacstre of a design is described using switch level
primitives, gate level primitives and user-definpdmitives. A module in Verilog encapsulates the
description of a design [5]. VeriloDeclarationsare used to define the various items, such astezgi
and parameters, used within a mod@tatementsire used to define the functionality or structofe¢he
design. Declarations and statements can be intsexpavithin a module; however, a declaration must
appear before its use. Listing 1 is an example ofoalule containing declarations and statements that
models the half-adder circuit shown in Figure 1.

module HalfAdder (A, B, Sum, Carry); //Name
/lof
/Imodule

input A, B; /I Declaration line 1

output Sum, Carry; /I Declaration line 2

assign Sum = A" B; /I Statement line 1
assign Carry = A & B; /I Statement line 2

endmodule // End of module
Listing 1: Half-Adder Verilog M odule

The name of the module KalfAdder. It has four ports; two input pors andB, and two output ports
SumandCarry. All ports are size 1-bit since no range has Istified in the declarations. The module
contains two continuous assignment statementsltsatribe the behavior of the half adder.

A

| o~ sum

Carry

Figure 1: A Half-Adder Circuit Schematic
The description of a design within a module camibieer one, or a combination of the following sgyle

Dataflow style The basic mechanism used to model a design irdataflow style is the continuous
assignment; where a value is assigned to a poréntie value of an operand used in the right hated s
expression changes, the right hand side express®valuated, and the value is assigned to théngeftl
side variable.

Behavioral style The behavioral descriptions provide a means ftinelehe behavioof a circuit in
abstract high -levadlgorithms.

Structural style The structural descriptions define the structfréne circuit in terms of components and
resemble a netlist that describes a schematic a&lguitv of the design. Structural Verilog descripsion
contain hierarchy in which components are defirtedifeerent levels [5].

3. Verilog Logic Modules

This section will deal with the implementation ofa logic devices employing Verilog. A 4-bit counter
and a full adder will be described and simulatadtihg 2 shows the Verilog behavioral descriptidrao
module that will behave as a 4-bit counter design.

module Counter (trigger, reset, count);
parameter counter_size = 4;
input trigger;

input reset;
inout [counter_size:1] count;
reg [counter_size:0] tmp_count;

always @(posedge reset or posedge trigger)f
begin
if (reset==1'b 1)

tmp_count <= {(counter_size + 1){1'b 0}};

else

tmp_count <= count + 1;
end
assign count = tmp_count;

endmodule
Listing 2: A 4-bit Counter Verilog Module

The moduleCounterhas two control inputsirigger, rese} and one input/output variableouny. The
parametercounter_sizas intended to define the size of the counter. tRisr examplecounter_sizes set
to 4 in order to define a 4-bit counter. This isyweaseful because by changing only this parameter,
different size counter can be implemented. The tfanality of the module is described in high-level
algorithms by includingf andelsestatements in the syntax of the code. Figureugtilates the schematic
of the 4-bit counte€Counter

COUNTER
Trigger[>——— Count [4:1]

Reset [>——

Figure 2: 4-bit Counter Counter

Figure 3 shows the simulation results obtainedtHermoduleCounter The total running simulation time
was 15@s, and the signal’s duration value was5For demonstration purposes the inpigger always
shifts values every|fs. Theresetsignal remains at “0” except at the interval fré&0us to 5%s. This
means that the outpabuntwill restart counting from “0” at §5@s.

Active-HDL Sim [counter) - Waveform2 = [_[O] =]
lle Search “iew Design Simulation 'waveform Tools Help

H_'ﬁ“ﬁ‘ﬂjﬁl,@]@]@]»n b s[5 4 W‘

[tmejoo Qs QAR |[ww 21w @[6% %%

020 o ' ' ' ' ' ' ' ' 130 160 us 150 usl

»n o x

N

& waveform2 [

Ready ,_,_,W’_,_ %

Figure 3: Simulation results of the 4-bit Counter
Listing 3 shows the description of a module thdt mehave as a full adder design.

module FA seq (A, B, Cin, Sum, Cout);
input A, B, Cin;

output Sum, Cout;
reg Sum, Cout;
reg T1, T2, T3;
always
@ (A or B or Cin) begin
Sum = (A ~ B) ~ Cin;

Tl = A & Cin;
T2 = B & Cin;
T3 = A & B;
Cout =(T1 | T2) | T3;
end
endmodule

Listing 3: A 1-bit Full Adder Verilog Module

The modulg=A_Sedhas three inputs and two outputs. The variaBlag Cout, T1, T2 andT3 are of type

reg because they are assigned values within the algtaysment. The always statement has a sequential
block associated with an event control. This mehasevery time there is a change in the inpyt8 or

Cin, the sequential block is executed. Statementswittsequential block execute sequentially, and the
execution suspends after the last statement irs¢lg@iential block has executed. Once the block has
executed, the always statement waits for a chantieeiinputsA, B or Cin. Figure 4 depicts the schematic
and the logic circuitry of the full add&A_Seq

A
| ——() sum
B T3
>
L Q Cout
Cin T2
>

Figure4: Full Adder FA_Seq

Figure 5 illustrates the successful simulationtaf tull adder, wherd, B, andCin are the inputs, and
SumandCoutare the outputs. The total running simulation tiwas 7Qs and the signal’s duration value
was 1Qs. That means that each signal remained at a kigte (0 or 1) for 15 before any change
occurs.

Active-HDL Sim [FullAdCode] - FullAdder. awf | _ [O] %]
File Search “iew Design Simulation ‘wWawveform Tools Help

(EaHE| & |2 @S| rmr s =« W‘

% BiefosTa s e e e |aes% %5

Name |value [R . . IR R
ol For..] 1 '_;
- B For.. -

& Cin For.. |—'_

= Sum | 1 1 |

= Cout | 1 I I [|
2 v[«lo] ..|—I

£ fulladder. awf /

Figure5: Full Adder Verilog smulations

4. Conclusions

The primary purpose of this research was to sthayfield of Hardware Description Languages and
Verilog. The study was significant for several mwas First, the utilization of Hardware Description
Languages in real life Engineering applicationd Wwdcome more conventional. Second, the study was
significant due to the major implication that pragmrmable logic based microcontrollers can be upgrade
as the requirements of a system increase as shotie icase of the counter. This will help the ISR (
System Reprogrammable) CPLD and FPGA based hardeearelopment, for industrial applications.
Third, it was demonstrated how the utilization afrNog benefits not only engineering applicatiobgt

also plays an important role accelerating the aesfgigital systems.

As Verilog and VHDL continue to gain momentum as Heardware Description Languages of choice for
programmable logic and are a requirement for theeldpment of the next generation of design
engineers, it is necessary that Engineering stadastwell as design engineers, could benefit tioeae
HDLs.

References

Wolf, W. (2002). ‘Modern VLSI Design Systems on Chip Desj@f"edition, Prentice Hall, USA.
Skahill, K. (1996)“VHDL for Programmable Logic; Addison-Wesley, USA.

Montenegro, J. (2002)ery High Speed Integrated Circuits (VHDL) and Weg Based Microcontroller
Implementation With In System Reprogrammable (IBR)dware Modules,” M.S. Thesis, Florida
International University, Florida, USA.

Gordon Arnold, M. (1999)Verilog DIGITAL Computer Design, Algorithms to Haware”, Prentice
Hall, USA.

Bhasker, J. (1999A Verilog HDL Primer”, Second Edition, Star Galaxy Publishing, USA.

Authorization and Disclaimer

Authors authorize LACCEI to publish the papersha tonference proceedings. Neither LACCEI nor the
editors are responsible either for the contenbotte implications of what is expressed in thegoap

