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Abstract 
Digital systems are becoming more and more complex and elaborate in terms of functionality and 
performance.  While an 8 bit system can perform well for certain applications, the need often arises for 16 
or 32 bit units for certain other applications.  It is impractical and inefficient to write the linear code for 
the enhanced systems.  Also, the test bench and evaluation of the enhanced system become extremely 
tedious and error prone.  The alternative to this linear coding is the modular approach, where either a 4 bit 
or 8 bit base unit is efficiently designed with the appropriate Hardware Description Language (HDL) 
platforms, and then integrate several of these modules in tandem, along with a microcontroller unit, to 
realize any complex and enhanced digital system. In this article, the authors will discuss such a modular 
design methodology, and present case studies of 4 bit digital units such as Counters, and Shift-registers. 
The methodology can be extended easily for any other sized system.  The authors will also present the 
simulations and evaluate the performance and reliability of such designs. 
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1. Introduction 
 
Counters and register systems are basic logic systems that are used repeatedly in many applications.  They 
provide various central functions and are fundamental to larger logic systems, such as a central processing 
unit (CPU).  Registers are found within the CPU, in the arithmetic logic unit (ALU), and data storage 
devices.  Registers provide the capability to store data for a desired period of time.  Large arrays of 
registers may be implemented to supply memory to store any desired data.  Counters may be used to keep 
track of time or to coordinate certain activities within a system.   All of these logic systems are easily 
implemented and not complex to design, making them proficient in building larger systems.  
Both, Counters and registers, can be programmed into chips through VHDL.  VHDL is a programming 
language to specify, model, represent and simulate digital hardware. Concerns that have to be supported 
by VHDL are real concurrency, timings and level of signals, controls for behavior in time, 
interconnection and propagation delay, and existence and meaning of signal edges.  VHDL allows the 



designer to model hardware: special constructs and elements in the language to model several levels of 
abstraction, structured design and hierarchical decomposition.  The traditional design methodology of 
gate level bottom-up (schematic entry with GUI) is replaced by RTL (register transfer level) description, 
such as HDL and text-files, of desired behavior. A synthesis tool is used to generate optimized gate-level 
implementation. 
 
2. Counters 
 
Counters consist of a register, or a few flip flops, which hold data that may increment or decrement over a 
period of time.  In the design of binary counters, they may be categorized into two types, synchronous and 
asynchronous counters.  Asynchronous counters have several clock inputs designated for the various flip 
flops in the system.  Synchronous counters have only one clock input which drives all the flip flops 
simultaneously.  Binary counters may be designed with any type of flip flop, most commonly JK flip 
flops and D flip flops.  To simplify the design of a binary counter, a state diagram and state table may be 
generated, as shown in Figure 1.   
 

 
 

Figure 1: Counter state diagram and state table 
 
From the state table, the circuit diagram may be implemented, which depends on the type of flip flop that 
is chosen. A binary counter may also include input control signals which may change the behavior of the 
counter.  A few examples of control signals to a binary counter may be RESET, SET, UP/DOWN, and 
ENABLE.  The RESET control signal would force all the flip flops to a LOW state.  The SET control 
signal would force all the flip flops to a HIGH state.  The UP/DOWN control signal dictates whether the 
binary counter will increment of decrement on the next clock pulse.  The ENABLE control signal at a 
HIGH would allow the binary counter to increment or decrement.  The binary counter would not change 
states if the ENABLE signal is LOW. 
 
2.1 Counter implementation 
 
The binary counter, for all simulations, was implemented as an up/down counter.  For each simulation, 
the binary counter included control signals of CLOCK, RESET, ENABLE, and UP/DOWN, shown in 
Table 1. 
 
 



System Signals Function 

CLOCK System clock that triggers the flip flops and states 

RESET Resets the counter to lowest binary number 

ENABLE Counter can only increment/decrement at HIGH 

UP/DOWN 
Determines if counter will increment of decrement on the next clock 

pulse. HIGH = increment and LOW = decrement 

COUNTER_REG Register that hold the output binary number 

 
Table 1: Sequence diagram for the binary counter 

 
The counter was designed to be flexible in its bit size.  This implementation made it very easy to expand 
from 4-bit to 8-bit and to 16-bit if needed by only changing the size of the output parameter 
counter_RegOut and its respective internal signal. Listing 1 shows the VHDL implementation of the 4 bit 
counter, and Figure 2 shows the counter simulation. 
 
-- Four-Bit up/down counter with Reset and Enable Signals  
-- using a Finite State Machine (FSM) Design  
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
USE IEEE.numeric_std.all; 
entity FourBit_Counter is 
  port( 
   Clk :    in STD_LOGIC; -- main clock 
   Reset :   in STD_LOGIC; -- activate high 
   Enable :   in STD_LOGIC; -- activate high 
   Up_Down :   in STD_LOGIC; -- count_up (active high);count_down (active low) 
   Counter_RegOut :  out STD_LOGIC_VECTOR(3 downto 0)-- output register 
      ); 
end FourBit_Counter; 
architecture counterArch of FourBit_Counter is 
    -- State definitions  
  CONSTANT    IDLE    : INTEGER := 0; 
    CONSTANT    START   : INTEGER := 1; 
 -- State variables 
    SIGNAL      counterState     : INTEGER;    -- present state 
    SIGNAL      counterNext      : INTEGER;    -- next state 
    SIGNAL      counterStart     : INTEGER;    -- start signal 
 ------------------------------------------------------------ 
  SIGNAL      counter_Reg: UNSIGNED (3 downto 0); --holds counter output 
BEGIN  
   Counter_RegOut <= STD_LOGIC_VECTOR (counter_Reg); 
   -- Acknowledge when counter should start 
 StartCounter: PROCESS (Clk, Reset, Enable) 
   BEGIN 
    IF (Reset = '1') THEN 
     counterStart <= 0; 
  ELSIF (Enable = '1')THEN -- if enable, start counter 
     counterStart <= 1; 
  ELSIF (Enable = '0') THEN 
    counterStart <= 0; 
  END IF; 
 END PROCESS StartCounter; 



 -- Acknowlege present state of the counter 
 StateCounter: PROCESS (Clk, Reset,counterNext,Enable) 
 BEGIN  
    IF (Reset = '1') THEN 
   counterState <= IDLE; 
      ELSIF (Enable = '1') THEN 
   counterState <= counterNext; 
  ELSIF (Enable = '0') THEN 
     counterState <= IDLE; 
  END IF; 
 END PROCESS StateCounter; 
 -- Acknowledge future state of the counter 
 NextCounter: PROCESS (counterState, counterStart, Clk) 
 BEGIN 
  CASE counterState IS 
   WHEN START  => -- Start counter 
    counterNext <= START; 
   WHEN OTHERS => 
     IF (counterStart = 1) THEN 
       counterNext <= START; -- Start counter 
    ELSE 
     counterNext <= IDLE; 
       END IF; 
  END CASE; 
 END PROCESS NextCounter; 
 -- Counter process 
 Counter: Process (counterState, counterstart, Clk,Up_Down) 
 BEGIN     
    CASE counterState IS 
       WHEN START   => 
          IF (rising_edge(Clk)) THEN 
             IF (UP_DOWN = '0') THEN 
                counter_Reg <= counter_Reg - 1; 
             ELSE 
                counter_Reg <= counter_Reg + 1; 
             END IF; 
          END IF; 
        WHEN OTHERS   => 
          counter_Reg <= "0000";                      
    END CASE; 
 END PROCESS Counter; 
END counterArch; 
 

Listing 1: VHDL 4-bit counter 
 

 
 

Figure 2: 4-bit counter simulation 



3. Registers 
 
Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of 
flip-flops connected in a chain so that the output from one flip-flop becomes the input of the next flip-
flop.  Most of the registers possess no characteristic internal sequence of states.  All the flip-flops are 
driven by a common clock, and all are set or reset simultaneously. Figure 3 shows an example of a 4 bit 
register behavior for 4 different instructions. 
 

 
 

Figure 3: 4-bit Shift register instructions 
 
3.1 Shift Register implementation 
 
According to the design of the registers, it was important to know that enable and rotenable could not be 
1 at the same time because the output shiftreg could not shift and rotate in the same clock cycle.  The 
register was designed to be flexible in its bit size.  This implementation made it very easy to expand from 
4-bit to 8-bit and to 16-bit if needed by only changing the size of the ports parameter shiftreg and 
parallel_data_in. Listing 2 shows the VHDL implementation of the 4 bit shift register, and the 
subsequent figures show the shift register simulation. 
 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE.numeric_std.all; 
 
entity shiftreg is 
port( 
    shiftreg:                out std_logic_vector (3 downto 0);  -- output of shift register 
    parallel_data_in:    in  std_logic_vector (3 downto 0);  -- parallel load 
    serial_data_in:      in  std_logic;  -- serial data input 
    load:                  in  std_logic;  -- 1 = load, 0 = no load 
    shift:                     in  std_logic;  -- 1 = shift left, 0 = shift right 
    rotate:                  in  std_logic;  -- 1 = rotate left, 0 = rotate right 
    enable:                 in  std_logic;  -- 1 = Shift, 0 = no shift 
    rotenable:           in  std_logic;  -- 1 = rotation, 0 = no rotation 
    clock:                 in  std_logic;  -- System clock 
    reset:                   in  std_logic); -- System reset 
 
end shiftreg; 
 



architecture behavioral of shiftreg is 
    signal shiftregtemp :    std_logic_vector (3 downto 0);  -- temporary shift register signal 
 
BEGIN 
    operations: PROCESS (clock, reset) 
 
    BEGIN 
        IF (reset = '1') THEN 
 
            shiftregtemp <= (OTHERS => '0'); -- resetting the temporary signal 
        ELSIF ((clock'EVENT) AND (clock='0')) THEN 
            IF (load = '1') THEN 
            shiftregtemp <= parallel_data_in; -- loading the parallel data into the temporary signal 
            ELSIF  ((enable = '1') AND (shift = '1')) THEN 
            shiftregtemp <= shiftregtemp(2 downto 0) & serial_data_in; -- Shifting left 
            ELSIF  ((enable = '1') AND (shift = '0')) THEN 
            shiftregtemp <= serial_data_in & shiftregtemp(3 downto 1); -- Shifting right 
            ELSIF  ((rotenable = '1') AND (rotate = '1')) THEN 
            shiftregtemp <= shiftregtemp(2 downto 0) & shiftregtemp(3); -- rotating left 
            ELSIF  ((rotenable = '1') AND (rotate = '0')) THEN 
            shiftregtemp <= shiftregtemp(0) & shiftregtemp(3 downto 1); -- rotating right 
            ELSE 
            shiftregtemp <= shiftregtemp; -- Hold and keep same output value 
       END IF; 
 
       END IF; 
 
    END PROCESS operations; 
 
shiftreg <= shiftregtemp; -- outputing value 
end behavioral; 
 

Listing 2: VHDL 4-bit shift register 
 

 
 

Figure 4: 4-bit Shift Register – Right Shift 
 
 
 



 
 

Figure 5: 4-bit Shift Register – Left Shift 
 

 
 

Figure 6: 4-bit Shift Register – Right Rotation 
 

 
 

Figure 7: 4-bit Shift Register – Left Rotation 
 
 



4. Conclusions 
 
Both designed systems, the Counter and the Shift Register worked as expected.  The behavior of 
these systems was observed under the frequency of 100 kHz.  However, when a chip is going to 
be implemented with any of these designs, frequencies should be taken into account for 
efficiency purposes. The ModelSim Software worked efficiently and without problems for 
simulation purposes. Both of these components, the counter and register, are very important in 
the VLSI area since they are often used by companies to implement chips.  It was demonstrated 
that both designs can be increased in size simply by changing the values of a few parameters in 
the VHDL code. This proves that these types of complex programmable logic devices (CPLD) 
are suitable for designs that will eventually need to be upgraded. Moreover it shows that a simple 
4-bit unit can be implemented and bigger units can be derived from it. 
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