
Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET’2006)
“Breaking Frontiers and Barriers in Engineering: Education, Research and Practice”
21-23 June 2006, Mayagüez, Puerto Rico.

Modular HDL Designs are Efficient, and Reliable

Jaime Marcelo Montenegro, Eng. Ph.D. Candidate
Research Associate, Florida International University, Miami, Florida, USA, montenegro@ieee.org

Vivek Jayaram, Eng. Ph.D. Candidate

Research Associate, Florida International University, Miami, Florida, USA, vjaya002@fiu.edu

Dr. Subbarao Wunnava, Ph.D., P.E.
Professor of Electrical & Computer Engineering, Florida International University, Miami, Florida, USA,

subbarao@fiu.edu

Abstract
Digital systems are becoming more and more complex and elaborate in terms of functionality and
performance. While an 8 bit system can perform well for certain applications, the need often arises for 16
or 32 bit units for certain other applications. It is impractical and inefficient to write the linear code for
the enhanced systems. Also, the test bench and evaluation of the enhanced system become extremely
tedious and error prone. The alternative to this linear coding is the modular approach, where either a 4 bit
or 8 bit base unit is efficiently designed with the appropriate Hardware Description Language (HDL)
platforms, and then integrate several of these modules in tandem, along with a microcontroller unit, to
realize any complex and enhanced digital system. In this article, the authors will discuss such a modular
design methodology, and present case studies of 4 bit digital units such as Counters, and Shift-registers.
The methodology can be extended easily for any other sized system. The authors will also present the
simulations and evaluate the performance and reliability of such designs.

Keywords
Very-large-scale integration, VHDL.

1. Introduction

Counters and register systems are basic logic systems that are used repeatedly in many applications. They
provide various central functions and are fundamental to larger logic systems, such as a central processing
unit (CPU). Registers are found within the CPU, in the arithmetic logic unit (ALU), and data storage
devices. Registers provide the capability to store data for a desired period of time. Large arrays of
registers may be implemented to supply memory to store any desired data. Counters may be used to keep
track of time or to coordinate certain activities within a system. All of these logic systems are easily
implemented and not complex to design, making them proficient in building larger systems.
Both, Counters and registers, can be programmed into chips through VHDL. VHDL is a programming
language to specify, model, represent and simulate digital hardware. Concerns that have to be supported
by VHDL are real concurrency, timings and level of signals, controls for behavior in time,
interconnection and propagation delay, and existence and meaning of signal edges. VHDL allows the

designer to model hardware: special constructs and elements in the language to model several levels of
abstraction, structured design and hierarchical decomposition. The traditional design methodology of
gate level bottom-up (schematic entry with GUI) is replaced by RTL (register transfer level) description,
such as HDL and text-files, of desired behavior. A synthesis tool is used to generate optimized gate-level
implementation.

2. Counters

Counters consist of a register, or a few flip flops, which hold data that may increment or decrement over a
period of time. In the design of binary counters, they may be categorized into two types, synchronous and
asynchronous counters. Asynchronous counters have several clock inputs designated for the various flip
flops in the system. Synchronous counters have only one clock input which drives all the flip flops
simultaneously. Binary counters may be designed with any type of flip flop, most commonly JK flip
flops and D flip flops. To simplify the design of a binary counter, a state diagram and state table may be
generated, as shown in Figure 1.

Figure 1: Counter state diagram and state table

From the state table, the circuit diagram may be implemented, which depends on the type of flip flop that
is chosen. A binary counter may also include input control signals which may change the behavior of the
counter. A few examples of control signals to a binary counter may be RESET, SET, UP/DOWN, and
ENABLE. The RESET control signal would force all the flip flops to a LOW state. The SET control
signal would force all the flip flops to a HIGH state. The UP/DOWN control signal dictates whether the
binary counter will increment of decrement on the next clock pulse. The ENABLE control signal at a
HIGH would allow the binary counter to increment or decrement. The binary counter would not change
states if the ENABLE signal is LOW.

2.1 Counter implementation

The binary counter, for all simulations, was implemented as an up/down counter. For each simulation,
the binary counter included control signals of CLOCK, RESET, ENABLE, and UP/DOWN, shown in
Table 1.

System Signals Function

CLOCK System clock that triggers the flip flops and states

RESET Resets the counter to lowest binary number

ENABLE Counter can only increment/decrement at HIGH

UP/DOWN
Determines if counter will increment of decrement on the next clock

pulse. HIGH = increment and LOW = decrement

COUNTER_REG Register that hold the output binary number

Table 1: Sequence diagram for the binary counter

The counter was designed to be flexible in its bit size. This implementation made it very easy to expand
from 4-bit to 8-bit and to 16-bit if needed by only changing the size of the output parameter
counter_RegOut and its respective internal signal. Listing 1 shows the VHDL implementation of the 4 bit
counter, and Figure 2 shows the counter simulation.

-- Four-Bit up/down counter with Reset and Enable Signals
-- using a Finite State Machine (FSM) Design
library IEEE;
use IEEE.STD_LOGIC_1164.all;
USE IEEE.numeric_std.all;
entity FourBit_Counter is
 port(
 Clk : in STD_LOGIC; -- main clock
 Reset : in STD_LOGIC; -- activate high
 Enable : in STD_LOGIC; -- activate high
 Up_Down : in STD_LOGIC; -- count_up (active high);count_down (active low)
 Counter_RegOut : out STD_LOGIC_VECTOR(3 downto 0)-- output register
);
end FourBit_Counter;
architecture counterArch of FourBit_Counter is
 -- State definitions
 CONSTANT IDLE : INTEGER := 0;
 CONSTANT START : INTEGER := 1;
 -- State variables
 SIGNAL counterState : INTEGER; -- present state
 SIGNAL counterNext : INTEGER; -- next state
 SIGNAL counterStart : INTEGER; -- start signal
 --
 SIGNAL counter_Reg: UNSIGNED (3 downto 0); --holds counter output
BEGIN
 Counter_RegOut <= STD_LOGIC_VECTOR (counter_Reg);
 -- Acknowledge when counter should start
 StartCounter: PROCESS (Clk, Reset, Enable)
 BEGIN
 IF (Reset = '1') THEN
 counterStart <= 0;
 ELSIF (Enable = '1')THEN -- if enable, start counter
 counterStart <= 1;
 ELSIF (Enable = '0') THEN
 counterStart <= 0;
 END IF;
 END PROCESS StartCounter;

 -- Acknowlege present state of the counter
 StateCounter: PROCESS (Clk, Reset,counterNext,Enable)
 BEGIN
 IF (Reset = '1') THEN
 counterState <= IDLE;
 ELSIF (Enable = '1') THEN
 counterState <= counterNext;
 ELSIF (Enable = '0') THEN
 counterState <= IDLE;
 END IF;
 END PROCESS StateCounter;
 -- Acknowledge future state of the counter
 NextCounter: PROCESS (counterState, counterStart, Clk)
 BEGIN
 CASE counterState IS
 WHEN START => -- Start counter
 counterNext <= START;
 WHEN OTHERS =>
 IF (counterStart = 1) THEN
 counterNext <= START; -- Start counter
 ELSE
 counterNext <= IDLE;
 END IF;
 END CASE;
 END PROCESS NextCounter;
 -- Counter process
 Counter: Process (counterState, counterstart, Clk,Up_Down)
 BEGIN
 CASE counterState IS
 WHEN START =>
 IF (rising_edge(Clk)) THEN
 IF (UP_DOWN = '0') THEN
 counter_Reg <= counter_Reg - 1;
 ELSE
 counter_Reg <= counter_Reg + 1;
 END IF;
 END IF;
 WHEN OTHERS =>
 counter_Reg <= "0000";
 END CASE;
 END PROCESS Counter;
END counterArch;

Listing 1: VHDL 4-bit counter

Figure 2: 4-bit counter simulation

3. Registers

Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of
flip-flops connected in a chain so that the output from one flip-flop becomes the input of the next flip-
flop. Most of the registers possess no characteristic internal sequence of states. All the flip-flops are
driven by a common clock, and all are set or reset simultaneously. Figure 3 shows an example of a 4 bit
register behavior for 4 different instructions.

Figure 3: 4-bit Shift register instructions

3.1 Shift Register implementation

According to the design of the registers, it was important to know that enable and rotenable could not be
1 at the same time because the output shiftreg could not shift and rotate in the same clock cycle. The
register was designed to be flexible in its bit size. This implementation made it very easy to expand from
4-bit to 8-bit and to 16-bit if needed by only changing the size of the ports parameter shiftreg and
parallel_data_in. Listing 2 shows the VHDL implementation of the 4 bit shift register, and the
subsequent figures show the shift register simulation.

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.numeric_std.all;

entity shiftreg is
port(
 shiftreg: out std_logic_vector (3 downto 0); -- output of shift register
 parallel_data_in: in std_logic_vector (3 downto 0); -- parallel load
 serial_data_in: in std_logic; -- serial data input
 load: in std_logic; -- 1 = load, 0 = no load
 shift: in std_logic; -- 1 = shift left, 0 = shift right
 rotate: in std_logic; -- 1 = rotate left, 0 = rotate right
 enable: in std_logic; -- 1 = Shift, 0 = no shift
 rotenable: in std_logic; -- 1 = rotation, 0 = no rotation
 clock: in std_logic; -- System clock
 reset: in std_logic); -- System reset

end shiftreg;

architecture behavioral of shiftreg is
 signal shiftregtemp : std_logic_vector (3 downto 0); -- temporary shift register signal

BEGIN
 operations: PROCESS (clock, reset)

 BEGIN
 IF (reset = '1') THEN

 shiftregtemp <= (OTHERS => '0'); -- resetting the temporary signal
 ELSIF ((clock'EVENT) AND (clock='0')) THEN
 IF (load = '1') THEN
 shiftregtemp <= parallel_data_in; -- loading the parallel data into the temporary signal
 ELSIF ((enable = '1') AND (shift = '1')) THEN
 shiftregtemp <= shiftregtemp(2 downto 0) & serial_data_in; -- Shifting left
 ELSIF ((enable = '1') AND (shift = '0')) THEN
 shiftregtemp <= serial_data_in & shiftregtemp(3 downto 1); -- Shifting right
 ELSIF ((rotenable = '1') AND (rotate = '1')) THEN
 shiftregtemp <= shiftregtemp(2 downto 0) & shiftregtemp(3); -- rotating left
 ELSIF ((rotenable = '1') AND (rotate = '0')) THEN
 shiftregtemp <= shiftregtemp(0) & shiftregtemp(3 downto 1); -- rotating right
 ELSE
 shiftregtemp <= shiftregtemp; -- Hold and keep same output value
 END IF;

 END IF;

 END PROCESS operations;

shiftreg <= shiftregtemp; -- outputing value
end behavioral;

Listing 2: VHDL 4-bit shift register

Figure 4: 4-bit Shift Register – Right Shift

Figure 5: 4-bit Shift Register – Left Shift

Figure 6: 4-bit Shift Register – Right Rotation

Figure 7: 4-bit Shift Register – Left Rotation

4. Conclusions

Both designed systems, the Counter and the Shift Register worked as expected. The behavior of
these systems was observed under the frequency of 100 kHz. However, when a chip is going to
be implemented with any of these designs, frequencies should be taken into account for
efficiency purposes. The ModelSim Software worked efficiently and without problems for
simulation purposes. Both of these components, the counter and register, are very important in
the VLSI area since they are often used by companies to implement chips. It was demonstrated
that both designs can be increased in size simply by changing the values of a few parameters in
the VHDL code. This proves that these types of complex programmable logic devices (CPLD)
are suitable for designs that will eventually need to be upgraded. Moreover it shows that a simple
4-bit unit can be implemented and bigger units can be derived from it.

References

[1] Spiegel, J. (1997). “Digital Design Laboratory”, [online], Sep. 12, Available WWW:
http://www.seas.upenn.edu/~ee201/lab/LabFullAdder/LabFullAdderF01.html
[2] Uyemura, J. (2001). “Introduction to VLSI Circuits and Systems,” New York, NY: John Wiley &
Sons, Inc.
[3] Skahill, K. (1996). “VHDL for Programmable Logic,” Menlo Park, CA: Addison-Wesley Publishing
Longman, Inc.

Authorization and Disclaimer

Authors authorize LACCEI to publish the papers in the conference proceedings. Neither LACCEI nor the
editors are responsible either for the content or for the implications of what is expressed in the paper.

