Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET'2006) "Educational Experiences of Embry-Riddle Students through NASA Research Collaboration" 21-23 June 2006, Mayagüez, Puerto Rico.

Educational Experiences of Embry-Riddle Students through NASA Research Collaboration

Keith Schlee^{*}, James Ristow[†] and Sathya Gangadharan^{*} Embry-Riddle Aeronautical University, Daytona Beach, FL 32114

> James Sudermann[§] and Charles Walker^{**} NASA, Kennedy Space Center, FL 32899

Abstract

NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identify the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.

1. Program Background

The NASA Graduate Student Researchers Program (GSRP) awards fellowships for graduate study leading to masters or doctoral degrees in the fields of science, mathematics, and engineering related to NASA research and development. The goal of NASA's GSRP is to cultivate research ties to the academic community, to help meet the continuing needs of the Nation's aeronautics and space effort by increasing the number of highly trained scientists and engineers in aeronautics and space-related disciplines, and to broaden the base of students pursuing advanced degrees in science, mathematics, and engineering. Research areas are in disciplines that lead to aeronautics and space careers. The program

^{*} Graduate Student, Department of Aerospace Engineering, schleek@erau.edu

[†] Undergraduate Student, Department of Aerospace Engineering, risto24c@erau.edu

[‡] Professor, Department of Engineering Sciences, sathya@erau.edu

[§] Controls Analyst, Mission Analysis Branch, Expendable Launch Vehicles Division, james.e.sudermann@nasa.gov

^{**} Lead Controls Analyst, Mission Analysis Branch, Expendable Launch Vehicles Division, charles.f.walker@nasa.gov

supports approximately 300 graduate students annually. Each student typically has a local Faculty Research Advisor as well as several contacts at NASA to offer advice and to aid in research. GSRP participants also have the option to utilize NASA Centers and/or university research facilities. Mentoring and practical research experiences are important aspects of the GSRP Fellowship.

The NASA Cooperative Education Programs are designed to combine academic studies with on-the-job training and experience and to give students an opportunity to work at a NASA Field Center while completing their education. Unlike an internship, which typically lasts only a summer or semester, a student in the co-op program will alternate semesters of school with work at NASA, with the intent of full time conversion upon graduation. A standard tour of duty consists of at least three semesters of work. This allows NASA to have a pipeline for qualified new hires that from experience will be good matches for their respective departments, while giving those same students the chance to preview what their job might be. Each NASA Field Center manages its own program. At NASA's Kennedy Space Center, the Cooperative Education Program is supported by many organizations throughout the center. These include Space Shuttle Processing, Spaceport Engineering and Technology, Space Station/Payload Processing, Spaceport Services, Safety/Health Independent Management, and Expendable Launch Vehicles.

Embry-Riddle is pleased to be a participant for each of these educational programs. NASA Kennedy Space Center's Expendable Launch Vehicles Division has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Since the project began in August 2004, five technical conference papers with graduate and undergraduate students taking a leading role in research have been published as a result of this joint collaboration:

- Schlee, K., Gangadharan, S.N., Ristow, J., Sudermann, J., Walker, C., and Hubert, C., Modeling and Parameter Estimation of Spacecraft Fuel Slosh Using Pendulum Analogs, AIAA/ASME/ASCE/AHS/ASC 47th Structures, Structural Dynamics and Materials (SDM) Conference, New Port, Rhode Island, May 1-4, 2006.
- Schlee, K., Gangadharan, S.N., Ristow, J., Sudermann, J., Walker, C., and Hubert, C., Modeling and Parameter Estimation of Spacecraft Fuel Slosh, 29th Annual AAS Guidance and Control Conference, In Proceedings, Paper # AAS-06-027, American Astronautical Society, Rocky Mountain Section, Breckenridge, Colorado, February 4-8, 2006.
- Schlee, K., Gangadharan, S.N., Ristow, J., Sudermann, J., Walker, C., and Hubert, C., Modeling and Parameter Estimation of Spacecraft Fuel Slosh Mode, In Proceedings, Winter Simulation Conference, Orlando, Florida, December 12-15, 2005
- Schlee, K., Gangadharan, S.N., Ristow, J., Sudermann, J., Walker, C., and Hubert, C., Advanced Method to Estimate Fuel Slosh Simulation Parameters, In Proceedings, Paper # AIAA 2005-3596, AIAA/ASME/SAE/ASEE 41st Joint Propulsion Systems Conference, Tucson, Arizona, July 10-13, 2005.
- Schlee, K., Sudermann, J., Walker, C., Gangadharan, S., and Ristow, J., Modeling Resonance in Spacecraft Fuel Slosh Using Pendulum Analogs, In Proceedings, 1st NASA/AIAA/AAS/NIA Space Exploration Conference, Orlando, Florida, January 2005.

Deleted: Students typically alternate between their co-op and school each semester until graduation.

2. Research Background

Spinning a spacecraft or an upper stage is a well-established method for stabilizing a space vehicle with a minimum of hardware, complexity, and expense. While spinning a deployed spacecraft over its operational lifetime has generally fallen out of style in favor of the more modern three axis stabilized active systems popular today, there still is a community of users that have to deal with spin stabilized upper stage dynamics. Many NASA and DoD payloads are launched on Boeing Delta II expendable launch vehicles with spinning solid rocket third stages. This particular version of the Delta II has been very popular for NASA interplanetary missions. Because of this, NASA's Expendable Launch Vehicle program office at Kennedy Space Center has been investigating ways to improve their understanding and ability to model spinning upper stage dynamics.

Liquid slosh in the fuel tanks of an attached spacecraft has been a long standing concern for space missions with a spinning upper stage. Loss of rotational kinetic energy through the movement of liquid propellants affects the gyroscopic stability of the combined spacecraft and upper stage. Energy loss leads to an ever increasing wobble or "nutation" which can grow to cause severe control issues (Hubert 2003). The "nutation angle" is defined as the angular displacement between the principal axis of rotation of the spacecraft and its angular momentum vector and is a measurement of the magnitude of the nutation (Wertz 1978). The amount of time it takes for the nutation angle to increase by a factor of e^{l} is defined as the Nutation Time Constant (NTC), and is a key parameter in assessing the stability of the spinning spacecraft during the upper stage burn. The NTC can sometimes be very difficult to calculate accurately during the early stages of spacecraft design.

The current research effort proposed is directed toward modeling fuel slosh on spinning spacecraft using simple 1-DOF pendulum analogs as in Figure 1. The pendulum analog models a spherical tank. An electric motor induces the motion of the pendulum to simulate free surface slosh. Parameters describing the simple pendulum models characterize the modal frequency of the free surface sloshing motion. The one degree of freedom model will help to understand fuel sloshing and serve as a stepping stone for future more complex simulations to predict the NTC accurately with less time and effort. Various simulation parameters are estimated by matching the pendulum/rotor model response to the experimental response of full sized test tanks in NASA's Spinning Slosh Test Rig (SSTR) located at the Southwest Research Institute (SwRI) in San Antonio, Texas. The SSTR can subject a test tank to a realistic nutation motion, in which the spin rate and the nutation frequency can be varied independently, with the spin rate chosen to create a centrifugal acceleration large enough to ensure that the configuration of the bladder and liquid in the tank is nearly identical to the zero-g configuration. The propellant motion is simulated using models with various parameters (inertia, springs, dampers, etc.) and the problem reduces to a parameter estimation problem to match the experimental results obtained from the SSTR (Gangadharan et al. 1991). The data from the tests are used to derive model parameters that are then used in the slosh blocks of a MATLAB/SimMechanics-based spacecraft and upper stage simulation. Currently the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and compared with the experimental results.

The current research is an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation of the experimental SSTR setup (Wood and Kennedy, 2003). Two different parameter estimation and optimization approaches are being evaluated and compared in order to arrive at a reliable and effective parameter identification process. The first approach is conducted using Newton's method for nonlinear least squares, or the MATLAB lsqnonlin algorithm.

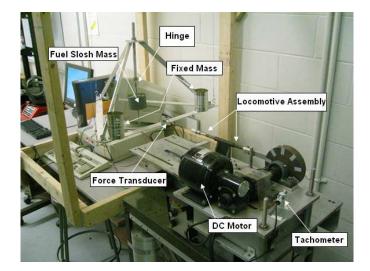


Figure 1: A Photograph of the Pendulum Experiment

The second estimation method is a "black box" approach using MATLAB's Parameter Estimation Toolbox. A simple one-degree-of-freedom pendulum experiment is being used to verify each approach. By applying the estimation approach to a simple system with known characteristics, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. This parameter estimation procedure is illustrated in Figure 2.

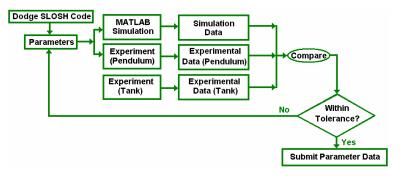


Figure 2: Parameter Identification Process

Ultimately, the proven process can be applied to the full sized SSTR setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. A spherical tank undergoing free surface slosh is the simplified model for determining the pendulum parameters. Free surface slosh has a well defined resonant frequency. The only sloshing motion assumed to be taking place in this simplified model is a surface wave that in turn is simulated by the pendulum. The rest of the liquid is essentially at rest and can be treated as if it were physically frozen. The experiment and the simulation were calibrated using frozen masses. This was to verify that the model was accurately representing the experiment's way of oscillating the pendulum frame using a flywheel and locomotive arm. Examples comparing the simulation to filtered experimental data are located in Figure 3.

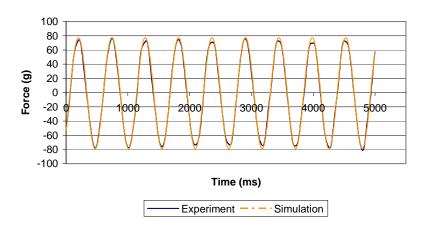


Figure 3: Frozen Mass Testing of Experiment and Simulation for a 70% Fill Level

This data was then used in each parameter estimation method to estimate the frozen mass. Table 1 shows a sample of frozen mass results for each method:

Table 1: Parameter Identification Results for a 60% Frozen Fill Level

Actual Mass = 2.848 kg						
Estimation Method	Test Frequency (Hz)	1.660	1.855	1.953	2.246	2.441
Newton's NLQ	Predicted Mass (kg)	2.661	2.780	2.791	2.801	2.866
	Mass % Difference	6.55%	2.40%	1.99%	1.65%	0.65%
Parameter Estimator	Predicted Mass (kg)	2.740	2.781	2.861	2.882	2.815
	Mass % Difference	3.81%	2.34%	0.47%	1.19%	1.16%

The results from Table 1 illustrate the effectiveness of each estimation method. The current research is focused on increasing the number of parameters to be estimated as required for pendulum testing and analyzing the time-dependent force output caused by the pendulum. Additional parameters will be the pendulum mass, pendulum length, and pendulum joint spring/damping coefficients. Also, the pendulum model exhibits a transient region at the beginning of each test before becoming periodic as in the frozen mass testing. Methods for incorporating this into each parameter estimation process are currently underway.

3. Joint Benefits of Research Collaboration

The above abstract represents a small sample of the work that has been accomplished as a result of the GSRP and Cooperative Education program and parallels similar collaborating efforts between universities and industry (Hendley, 1997). Benefits are numerous for both Embry-Riddle and NASA. The benefits gained by students, NASA, and Embry-Riddle are listed below:

Students

- Research experience (practical work experience)
- Communication skills (presentation, technical writing, resume writing, and interviewing)
- Reference letters (for jobs, internships, co-ops, and part-time opportunities)

- Contacts for jobs (networking in the "real-world") Exposure to work environment and responsibility (lead role in research, meeting deadlines, and working under pressure) Active participation in conferences (presentation and answering questions) Bridging the gap between government agencies and academia (by understanding the differences) Exposure to "real-world" project peer review process (answering technical questions and suggesting future work) First-hand look and experience of the Aerospace field (practical projects and actual prototype+ Formatted: Bullets and Numbering testing) NASA Fresh, creative minds with new outlook to solve their problems (through students and faculty) Economical resource (student involvement and university resources/labs) Venue to complete side tasks (projects that are important but not in the mainstream) Formatted: Bullets and Numbering Products or tools gained from research that can be used in the future (research innovations) Employment (co-ops/part-time/full-time) Positive relations with academia (favoring long-term healthy working relationship) Publish and present good technical papers in collaboration (with academic faculty in good journals and conferences) Embry-Riddle
 - Builds reputation within the aerospace industry (faculty publications and research collaborations)
 - Creates a bridge for future joint projects (developing healthy working relationships)
 - External source for research ideas (practical problems for research)
 - <u>Creates research opportunities for students</u> (faculty involve students in research)
 Generates prestige within the academic community (NASA collaboration and leading experts)
 - Generates prestige within the academic community (NASA collaboration and leading exp in the field)
 - Bring "real-world" experience into classroom (teach practical aspects of problems and assign projects to students)
 - Help faculty to gain "real-world" experience through the NASA Faculty Fellowship Program (faculty spending summer months at NASA centers)

4. Supporting Organizations

The research collaboration for this project has been supported by a several organizations in industry along with Embry-Riddle and NASA. These include The MathWorks, Southwest Research Institute (SwRI), and Hubert Astronautics. All of these organizations have helped in this research signifying a true collaborative effort between industry, government, and academia. A block diagram illustrating the involvement of each organization is shown in Figure 4.

Formatted: Bullets and Numbering

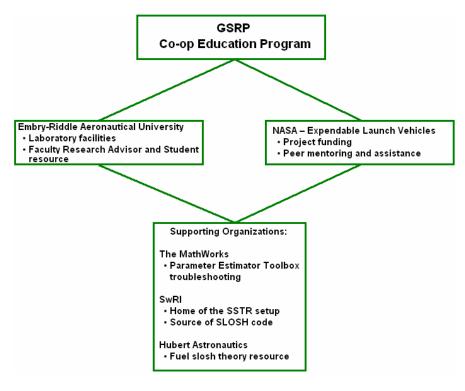


Figure 4: Block Diagram of the Organizational Structure of NASA/Embry-Riddle Fuel Slosh Program

5. Conclusions

The role that Embry-Riddle has played in each NASA-sponsored educational program has had a tremendous positive reaction from all organizations involved. Future collaboration between each organization is continuing at Embry-Riddle with new fuel slosh research goals already in the works. Future research opportunities on other projects are now a possibility due to the successful relationship that this research collaboration project has forged.

References

Hubert, C., Behavior of Spinning Space Vehicles with Onboard Liquids, Hubert Astronautics, 2003.

- Wertz, James R., editor, Spacecraft Attitude Determination and Control, copyright 1978, ISBN 90-277-0959-9.
- Gangadharan, S.N., Nikolaidis, E., Haftka, R.T., Probabilistic System Identification of Flexible Joint Models, AIAA Journal 1991.
- Wood, G.D., and Kennedy, D.C., Simulating Mechanical Systems in Simulink with SimMechanics, The Mathworks report 2003.
- Hendley, V., The Basics of Successful Joint Ventures, ASEE Prism, pp. 18-21, January 1997.

Authorization and Disclaimer

Authors authorize LACCEI to publish the papers in the conference proceedings. Neither LACCEI nor the editors are responsible either for the content or for the implications of what is expressed in the paper.