Second LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2004)

“Challenges and Opportunities for Engineering Education, Research and Development”

2-4 June 2004, Miami, Florida, USA

Tutorial on VHDL and Verilog Applications

Dr. Subbarao Wunnava, Ph.D., P.E.

Professor of Electrical & Computer Engineering, Florida International University, Miami, Florida, USA

Jaime Marcelo Montenegro, Ph.D. Student

VLSI Lab Senior Engineer, Florida International University, Miami, Florida, USA

Abstract

The growing sophistication of applications continually pushes the design and manufacturing of integrated circuits to new levels of complexity. Due to major advances in the development of electronics and miniaturization, vendors are capable of building and designing products with increasingly greater functionality, higher performance, lower cost, lower power consumption, and smaller dimensions. However, the bottleneck appears to be the ability of designers to target the necessary increase in the complexity of electronic devices. Furthermore, the electronics industry requires systems to be capable of in-site reprogramming, where the upgrading task depends more on software than on hardware. This situation has fostered the need for widespread adoption of modern technologies in design and testing. Of the several existing methodologies, high-density Programmable Logic Devices (PLDs) as well as the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) and Verilog Hardware Description Language are key elements in the evolution of electronic devices. The authors have studied the field of programmable logic and deployed its capabilities. It was demonstrated how the utilization of VHDL and Verilog benefits not only engineering applications, but also plays an important role accelerating the design of digital systems.

Keywords

Very-large-scale integration, VHDL, Verilog.

1. Introduction
Higher density Programmable Logic Devices, including Complex PLDs (CPLDs) and Field Programmable Gate Arrays (FPGAs), are microcontrollers that can be used to integrate large amounts of logic in a single IC. Devices such as CPLDs and FPGAs were developed to follow the criteria that in order to upgrade or improve the performance and capabilities of an electronic system, only the devices themselves should be reprogrammed with new instructions and parameters to fulfill the new demands of that system. With that in mind, the electronics market has a major tool for the development of the next generation of electronic devices. By using these microcontrollers, the issue of achieving adequate scalability, proper upgrade, and stability of a system became a reality. However to efficiently program these logic devices, there was a need for powerful computer languages. Hardware Description Languages such as VHDL and Verilog are particularly well suited for designing with programmable logic devices.

This article is organized as follows: Section 2 will present an overview of VHDL, its capabilities, the implementation and simulation of a VHDL logic module. Section 3 will introduce an overview of Verilog, its capabilities, the implementation and simulation of a Verilog logic module. Section 4 will present the conclusions based on the results obtained.

2. VHDL Overview
The concept of a Hardware Description Language (HDL) was born from the necessity of bringing the worlds of hardware and software back together again. Vendors were looking for a computer language to document electronic systems with the aim to support the state of the art in silicon-based technology. They wanted the design descriptions to be computer readable and executable. This was followed by the arrival of Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) (Montenegro, 2002).

VHDL is a hardware description language employed to model a digital system or digital hardware device at many levels of abstraction, ranging from the algorithmic level to the gate level (Bhasker, 1999a). The complexity of the digital system being modeled could vary from that of a simple gate to a complete digital electronic system, or anything in between. The digital system can also be described hierarchically. The VHDL language can also be described as a combination of languages as shown in Figure 1.

[image: image1.wmf]VHDL

LANGUAGE

GENERATION

WAVEFORM

IONS

SPECIFICAT

TIMING

LANGUAGE

NETLIST

LANGUAGE

CONCURRENT

LANGUAGE

SEQUENTIAL

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

å

Figure 1: VHDL as an Integration of Languages

Therefore, VHDL has constructs that enable the user to express the concurrent or sequential behavior of a digital system with or without timing (Skahill, 1996). It also allows the modeling of systems as an interconnection of components. Test waveforms can also be generated using the same constructs. All the above constructs may also be combined to provide a comprehensive description of the system in a single model. The basic building blocks of VHDL design are the entity declaration and the architecture body (Skahill, 1996).

2.1 VHDL Entity Declaration

An entity declaration describes the design input/output (I/O) that may include parameters used to customize an entity. The entity declaration is analogous to a schematic symbol, which describes a component’s connections to the rest of the design. The entity declaration specifies a name by which the entity can be referenced in a design’s architecture. A graphical schematic for a 4-bit wide 4 to 1 logic multiplexer is depicted in Figure 2.

[image: image2.wmf]a[3:0]

00

x[3:0]

s(1)

s(0)

b[3:0]

c[3:0]

d[3:0]

01

10

11

MUX

Figure 2: Block diagram of MUX

The multiplexer has a name (MUX), four 4-bit inputs (a, b, c, d), one 2-bit selection line (s), and one 4-bit output (x). The following listing describes the entity declaration in VHDL.

entity MUX is port (

 a, b, c, d: in std_logic_vector(3 downto 0);

 s: in std_logic_vector(1 downto 0);

 x: out std_logic_vector(3 downto 0));

end MUX;

Listing 1: A 4 to 1 Multiplexer VHDL Entity Declaration

2.2 VHDL Architecture Body

An architecture body describes the functionality, structure, and contents of a design entity. Every architecture body is associated with an entity declaration. If the entity declaration is viewed as a “black box,” for which the inputs and outputs are known but the details of what is inside the box are not, then the architecture body is the internal view of the black box (Bhasker, 1999a). VHDL allows the user to write the designs using various styles of architecture. An architecture can contain any combination of behavioral, structural or dataflow styles to define an entity’s function. These styles allow programmers to describe a design at different levels of abstraction, from using algorithms to gate level primitives. Listing 2 contains the architecture body that defines the behavior of multiplexer MUX.

architecture archmux of mux is

 begin

 with s select

 x <= a when “00”,

 b when “01”,

 c when “10”,

 d when others;

 end archmux;

Listing 2. Architecture of a 4 to 1 Multiplexer

Based on the value of signal s, signal x is assigned one of four possible values (a, b, c, or d). This construct enables a concise description of the 4 to 1 multiplexer. Three values of s are explicitly enumerated (“00”, “01”, and “10”). The reserved word others is used to indicate the remaining possible values for s. That is, others is specified instead of “11”. The entity declaration and architecture body described in Listings 1 and 2 respectively define the complete VHDL implementation of a 4 to 1 multiplexer. Figure 3 illustrates the simulation of the multiplexer (between 200ns to 500ns); where a, b, c, and d are the data inputs, s is the selection line, and x is the output.

[image: image3.png]Acti

IDL Sim (mux] - Waveform2 *

Fie Seach View Design Simistion Wavefom ook

Help

v mm ook Qo @Qa = o] e% 5]

e [simal 5

1 <=0001 |
T —

0 Clck 1 I 1 I 1 I

2 T z y €) a

& waveform2 |

Figure 3: Simulation results of Multiplexer MUX

When the selection lines s(1) and s(0) become “0” (between 200ns to 250ns), the output x becomes “1”. The only data input that had this value was a. Therefore, by selecting “0” for both selection lines, the multiplexer asserted the first data input a as it was expected.

3. Verilog Overview
Verilog HDL is a hardware description language that can describe digital systems from the algorithmic level to the gate level to the switch level. The Verilog HDL language includes capabilities to describe the behavioral nature of a design, the dataflow nature of a design, a design’s structural composition, delays and a waveform generation mechanism including aspects of response monitoring and verification, all modeled using one single language (Bhasker, 1999b). The language not only defines the syntax but also defines very clear simulation semantics for each language construct. Therefore, models written in this language can be verified using a Verilog simulator. The language inherits many of its operator symbols and constructs from the C programming language. The basic building unit of description in Verilog is the module.

3.1 Verilog Module
A Module describes the functionality or structure of a design and also describes the ports through which it communicates externally with other modules. The structure of a design is described using switch level primitives, gate level primitives and user-defined primitives. A module in Verilog encapsulates the description of a design (Bhasker, 1999b). Verilog Declarations are used to define the various items, such as registers and parameters, used within a module. Statements are used to define the functionality or structure of the design. Declarations and statements can be interspersed within a module; however, a declaration must appear before its use. Listing 3 is an example of a module containing declarations and statements that models the half-adder circuit shown in Figure 4.

module HalfAdder (A, B, Sum, Carry); //Name

 //of

 //module

input A, B;

// Declaration line 1

output Sum, Carry;
// Declaration line 2

assign Sum = A ^ B;
// Statement line 1

assign Carry = A & B;
// Statement line 2

endmodule

// End of module

Listing 3: Half-Adder Verilog Module

The name of the module is HalfAdder. It has four ports; two input ports A and B, and two output ports Sum and Carry. All ports are size 1-bit since no range has been specified in the declarations. The module contains two continuous assignment statements that describe the behavior of the half adder.

[image: image4.wmf]A

Sum

B

Carry

Figure 4. A Half-Adder Circuit Schematic

The description of a design within a module can be either one, or a combination of the following styles: dataflow, behavioral, and structural.

3.1.1 Dataflow style

The basic mechanism used to model a design in the dataflow style is the continuous assignment; where a value is assigned to a port. When the value of an operand used in the right hand side expression changes, the right hand side expression is evaluated, and the value is assigned to the left hand side variable.

3.1.2 Structural style

The structural descriptions define the structure of the circuit in terms of components and resemble a netlist that describes a schematic equivalent of the design. Structural Verilog descriptions contain hierarchy in which components are defined at different levels (Bhasker, 1999b).

3.1.3 Behavioral style

The behavioral descriptions provide a means to define the behavior of a circuit in abstract high -level algorithms. Listing 4 shows the Verilog behavioral description of a module that will behave as a 4-bit counter design.

module Counter (trigger, reset, count);

parameter counter_size = 4;

input
trigger;

input
reset;

inout
[counter_size:1] count;

reg
[counter_size:0] tmp_count;

always @(posedge reset or posedge trigger)

begin

if (reset == 1'b 1)

 tmp_count <= {(counter_size + 1){1'b 0}};

else

 tmp_count <= count + 1;

end

assign count = tmp_count;

endmodule

Listing 4: A 4-bit Counter Verilog Module

The module Counter has two control inputs (trigger, reset) and one input/output variable (count). The parameter counter_size is intended to define the size of the counter. For this example, counter_size is set to 4 in order to define a 4-bit counter. This is very useful because by changing only this parameter, a different size counter can be implemented. The functionality of the module is described in high-level algorithms by including if and else statements in the syntax of the code. Figure 5 illustrates the schematic of the 4-bit counter Counter.

[image: image5.wmf]Trigger

Count [4:1]

Reset

COUNTER

Figure 5: 4-bit Counter Counter

Figure 6 shows the simulation results obtained for the module Counter. For demonstration purposes the input trigger always shifts values every 5(s. The reset signal remains at “0” except at the interval from 50(s to 55(s. This means that the output count will restart counting from “0” at 50(s.

[image: image6.png]each View Design Simulation Waveform Tools Help

[_[O]x]

B[o]S]r el HW] ez |

[smaochasim/@aaww/=nueu|essn
Sl =
> ger o N O W I W B B B Y W e W W
5 comt s 3 (I S (S GRS (S S S S)
= counlf4] 1 L I
= count3) 0 L 1 |
©cam@ 0 | [— [— I —
= count(1) 1 LT 1 [1 M [1 [1 [1 [1 I e
Al Dietols”

& waveform2

Ready

Figure 6. Simulation results of the 4-bit Counter

4. Conclusions
The primary purpose of this research was to study the field of Hardware Description Languages such as VHDL and Verilog. The study was significant for several reasons. First, the utilization of Hardware Description Languages in real life Engineering applications will become more conventional. Second, the study was significant due to the major implication that programmable logic based microcontrollers can be upgraded as the requirements of a system increase as shown in the case of the counter. This will help the ISR (In System Reprogrammable) CPLD and FPGA based hardware development, for industrial applications. Third, it was demonstrated how the utilization of Verilog benefits not only engineering applications, but also plays an important role accelerating the design of digital systems. VHDL and Verilog were employed to describe the models for digital hardware devices. These models specified the external view of the device and one or more external views. The internal view of the device specified the functionality or structure, while the external view specified the interface of the device through which it communicated with the other models in its environment.

5. References
Bhasker, J. (1999a). A VHDL Primer, 3rd edition, Prentice Hall, USA.

Bhasker, J. (1999b). A Verilog HDL Primer, 2nd edition, Star Galaxy Publishing, USA.

Montenegro, J. (2002). “Very High Speed Integrated Circuits (VHDL) and Verilog Based Microcontroller Implementation With In System Reprogrammable (ISR) Hardware Modules”, M.S. thesis, Florida International University, Florida, USA.

Skahill, K. (1996). VHDL for Programmable Logic, 1st edition, Addison-Wesley, USA.

Wolf, W. (2002). Modern VLSI Design Systems on Chip Design, 3rd edition, Prentice Hall, USA.

_1078054588

_1120130299.unknown

_1077123376.vsd
�

b[3:0]�

c[3:0]�

d[3:0]�

01�

s(1)�

s(0)�

10�

11�

MUX�

a[3:0]�

00�

x[3:0]�

_1077291895.vsd
�

Trigger�

Count [4:1]�

Reset�

COUNTER�

_1077283258

_1076674016.vsd
�

�

A�

B�

Sum�

Carry�

