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Abstract
In this paper, inverse magnetostriction effect (IME) is investigated for noise reduction in machinery applications. The FE implementation is performed on 2 hp surface mounted permanent magnet motor in two dimensions (2d) as well as in three dimensions (3d). The experimental data for IME is obtained by performing test on an M-19 electrical steel sample. The implementation results show the increase in the forces acting on the ferromagnetic region causing more deformation in the back iron. Therefore magnetostrictive forces must be accounted for reduction of the noise in electric machines especially in sensitive applications.
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1. Introduction
Noise in electric machines has always been a subject of research interest in many practical applications. There are mainly three different noise sources in electric machines namely aero dynamical, magnetic and mechanical. In this paper, we concentrate on identifying magnetic noise sources. Magnetic noise is mainly caused by two reasons; one is reluctance forces acting at the interface between two medium of different permeabilities and other is magnetostrictive forces acting due to change in the permeability of the medium. Change in the permeability of the medium is caused by stress on the material, the phenomenon commonly known as inverse magnetostriction effect [1]. As the permeability is changed, the force acting on the material is changed causing more deformation of the ferromagnetic region. This introduces eccentricity in the air gap and back iron dimensions and in turn causes more noise. Therefore proper methods must be introduced to account for IME. 
2. Experimental Testing

Presently there was no material magnetization data available under stress level with the manufacturer [2]. In order to obtain magnetization characteristics for M-19 electrical steel under stress conditions, experiments have been performed in NHMFL [3]. This data is subsequently used for implementation on PM motor.
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     The measurement principle is shown in Figure (1).The sample is placed at the center of a high field superconducting magnet. Uniaxial tensile stress is applied at the two sides of the sample to obtain the required stress on the sample through a load cell. In order to measure the flux density inside the sample, a B coil is used. As the thickness of the sample sheet is very small, 0.003m, it is impossible to put any sensor inside it for field strength measurement. Instead, hall probes are put next to it at different distances along the path AB perpendicular to the sample to measure the field strength outside the sample. Extrapolation is used to determine the field strength at any point inside the sample. Different values of stress were applied on the sample and corresponding values of flux density and magnetic strength were recorded. The obtained BH curves are shown in the Figure (2).
3. Formulation and Modeling considerations
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In electric machinery, ferromagnetic parts are subjected to rotating flux conditions. In this case, B and H are no longer parallel to each other with B lags H. Therefore the full reluctivity tensor must be used in the magnetic analysis. Magnetic and mechanical properties are interrelated and their relationship is shown in  Figure (3).While solving coupled magneto-mechanical analysis, due to interdependence of the magnetic and mechanical properties, both stress and permeability of the ferromagnetic regions change. Magnetic field induces stress inside the material. This internal stress along with external applied stress changes 
permeability of the medium. This change in the permeability causes increase in the magnetic forces which in turn cause more deformation. To account for this interdependence, coupled magneto mechanical analysis must be solved. As the nonlinear magnetic properties are used for ferromagnetic region, iterations should be performed to reach a converged solution. This iteration is considered as internal loop. From this solution, the stress on each element is obtained and magnetic property of that element is modified according to stress level. Then coupled equations are solved till convergence is achieved. These iterations can be considered as external loop. The looping is continued until total energy of the ferromagnetic region under consideration is unchanged. This complete process is called “material property updating procedure”. The formulation of force calculation used for both 2d (vector potential)[4] and 3d (scalar potential) [5] is shown below:
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---2d (2)
The third term in both equations (1) and (2) is magnetic force due to the inverse magnetostriction effects of element 
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 term for full reluctivity tensor in case of 2d and 3d is written below [6]:
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Where, E is Young’s modulus, 
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 is Poisson’s ratio
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 are the derivatives of reluctivity w.r.t. stress in x, y, z directions.
To determine reluctivity of the element, stress information is obtained from coupled magneto-mechanical analysis. From the stress value, two BH curves are identified to be used for calculation. Depending on the flux density value, reluctivity values on selected BH curves are obtained by performing nonlinear Lagrange interpolation. Upon getting those reluctivity values on the curves, linear interpolation is performed to obtain element reluctivity value. For calculating the derivative of the reluctivity with respect to the stress, following formulations are used with full reluctivity tensor [6]:
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Where 
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 are inclination angle of flux density with respect to the rolling direction, 
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The calculation of force values is performed after finishing the material property updating procedure. These IME forces are then applied back on the ferromagnetic region and iterations are performed till convergence is achieved. This solution gives the final results for a given rotor position. Such procedure is repeated for different rotor positions to obtain a complete transient magneto mechanical solution including full reluctivity tensor. A 2 hp surface mounted permanent magnet motor is used for implementation of coupled magneto mechanical analysis including IME as shown in Figure (4). 
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From Figure (5), it is clear that deformation with magnetostriction is more and asymmetric compared to without magnetostriction. Increase in the deformation is due to addition of the IME forces to the reluctance forces while asymmetry can be attributed to the presence of the IME forces at the teeth shank and back iron. As the magnitude of the IME forces is dependent on the flux density value, they cause asymmetrical deformation in back iron. From Figure (6), it is clear that at the teeth surface the magnitude of the forces with and without magnetostriction are almost same and follow the expected pattern. This is due to reluctance forces which are dominant compared to IME forces. At the teeth shank, reluctance forces are absent and only IME forces are visible. The difference in force magnitudes is more pronounced in the back iron where we can see only IME forces. It is seen that IME forces at back iron do not follow a repetitive pattern. The magnitudes of forces shown in this figure are for an assumed 2 inch axial length of the motor model.
5. Conclusion
We presented and implemented a magneto-mechanical model for electric machine analysis including magnetostrictive effects. Full tensor reluctivity formulation is used and the analysis is done in 2d and 3d. The result clearly shows an increase in the magnitude of the deformation due to IME forces in the back iron. This is one of the reasons for noise emitted in electric machines. The increase in the value of the forces must be accounted at the design stage to reduce such noises in a variety of applications of electric machinery.
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Figure 1: IME measurement procedure





Figure 2: Experimentally obtained BH curves





Figure 3: Inclusion of inverse magnetostriction effect in coupled analysis
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Figure 4: one pole of 2 hp motor
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Figure 5: Deformation on stator with (top) and without (bottom) magnetostriction in 3d
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Figure 6: Force at teeth surface (left), force at teeth shank (middle), force at back iron (right) with and without magnetostriction in 3d
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